a) Với a>0, a≠1 ta có:
P=1a−1+3a+5aa−1−a−1.(a+2a+1)−4a4a=1a−1+3a+5a−1a−1.a−2a+14a=a−1+3a+5a−1a−1.a−124a=4a+4a−1a−1.a−124a=4a+4a−1.a−14a=4a+1a+1a−1.a−14a=1a
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
ĐĂNG KÝ VIP
c) Tìm x để biểu thức P=A.B có giá trị là số nguyên.
c) Tìm giá trị x thỏa mãn: Px=6x−3−x−4.
Cho biểu thức P=x+1x−9−1x+3x−3. Tìm điều kiện xác định và rút gọn N
Cho biểu thức A=x+3x+3 và B=x+3x−2x−9−1x+3.x−3x+1 với x≥0, x≠9.
a) Tính giá trị của A khi x = 16.
Cho biểu thức P=x−1x:x−1x+1−xx+x.
a) Chứng minh rằng P>0, ∀x>0, x≠1 .
Cho biểu thức A=x+1x−2 và B=xx+1+1−xx−2−x+4x−x−2 với x≥0, x≠4.
a) Tính giá trị của A khi x=7+43.