c) Cho P=AB. Tìm giá tri nhỏ nhất của P.
c) Ta có: P=AB=x+3x+3:x+1x+3=x+3x+1=x+1+4x+1−2
Áp dụng bất đẳng thức Cô-si cho hai số x+1>0 và 4x+1>0 ta được:
=x+1+4x+1−2≥2x+1.4x+1−2=2⇒P≥2
Đẳng thức xảy ra ⇔x+1=4x+1⇔x=1 (thỏa mãn)
Vậy minP = 2 khi m = 1.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
ĐĂNG KÝ VIP
c) Tìm x để biểu thức P=A.B có giá trị là số nguyên.
c) Tìm giá trị x thỏa mãn: Px=6x−3−x−4.
Cho biểu thức P=x+1x−9−1x+3x−3. Tìm điều kiện xác định và rút gọn N
Cho biểu thức A=x+3x+3 và B=x+3x−2x−9−1x+3.x−3x+1 với x≥0, x≠9.
a) Tính giá trị của A khi x = 16.
Cho biểu thức P=x−1x:x−1x+1−xx+x.
a) Chứng minh rằng P>0, ∀x>0, x≠1 .
Cho đoạn thẳng AB và một điểm C trên AB .Vẽ trên cùng một nửa mặt phẳng bờ AB các nửa đường tròn có đường kính AB,AC,BC . Xác định vị trí của điểm C trên đoạn AB để diện tích phần giới hạn bởi ba nửa đường tròn đó dạt giá trị lớn nhất.
Cho DABC nội tiếp đường tròn (O) D là điểm bất kỳ thuộc cung BC không chứa A và không trùng với B,C. Gọi H,I,K theo thứ tự là chân các đường vuông góc kẻ từ D đến các đường thẳng BC , AC, AB . Đặt BC = a , AC = b ,AB = c, DH = x , DI = y , DK = z .Tìm vị trí của điểm D để tổng ax+by+cz nhỏ nhất
Cho DABC nội tiếp đường tròn (O) D là điểm bất kỳ thuộc cung BC không chứa A và không trùng với B,C. Gọi H,I,K theo thứ tự là chân các đường vuông góc kẻ từ D đến các đường thẳng BC , AC, AB . Đặt BC = a , AC = b ,AB = c, DH = x , DI = y , DK = z . Chứng minh rằng :by+cz=ax
Cho đường tròn (O;R) đường kính BC , A là một điểm di động trên đường tròn . Vẽ tam giác đều ABM có A và M nằm cùng phía đối với BC . Gọi H là chân đường vuông góc kẻ từ C xuống MB. Gọi D, E , F, G theo thứ tự là trung điểm của OC, CM, MH, OH . Xác định vị trí của điểm A để diện tích tứ giác DEFG đạt giá trị lớn nhất.
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A .Qua A vẽ hai tia vuông góc với nhau , chúng cắt các đường tròn (O) , (O’) lần lượt tại B và C. Xác định vị trí của các tia đó để D ABC có diện tích lớn nhất .
Cho hình vuông ABCD cạnh a .Vẽ cung BD tâm A bán kính a (nằm trong hình vuông ) .một tiếp tuyến bất kỳ với cung đó cắt BC, CD theo thứ tự ở M và N. Tính độ dài nhỏ nhất của MN.
Cho nửa đường tròn có đường kính AB = 10 cm .Một dây CD có độ dài 6cm có hai đầu di chuyển trên nửa đường tròn . Gọi E và F theo thứ tự là hình chiếu của A và B trên CD. Tính diện tích lớn nhất của tứ giác ABFE.