Thứ sáu, 24/01/2025
IMG-LOGO

Câu hỏi:

15/07/2024 896

Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm  M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (O) ( C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B). Chứng minh AMCO và AMDE là các tứ giác nội tiếp đường tròn.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm  M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (O) ( C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B). Chứng minh AMCO và AMDE là các tứ giác nội tiếp đường tròn. (ảnh 1)

Vì MA, MC là tiếp tuyến nên: MAO = MCO = 90°

=> AMCO là tứ giác nội tiếp đường tròn đường kính MO.

ADB = 90° (góc nội tiếp chắn nửa đường tròn).

=> ADM = 90°.                                                                (1)

Ta có OA = OC = R, MA = MC (tính chất tiếp tuyến).

Suy ra OM là đường trung trực của AC.

=> AEM = 90°.                                                                (2)

Từ (1) và (2) suy ra AMDE là tứ giác nội tiếp đường tròn đường kính MA.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang ABCD ( AB // CD, AB < CD ) có C = D = 60°, CD = 2AB. Chứng minh bốn điểm A, B, C, D cùng thuộc một đường tròn.

Xem đáp án » 20/09/2022 239

Câu 2:

b) Chứng minh rằng bốn điểm C, F, M, B thuộc đường tròn tâm E.

Xem đáp án » 20/09/2022 109

Câu 3:

Cho đường tròn tâm O. Kẻ đường kính AB và CD vuông góc với nhau. Gọi E là điểm chính giữa của cung nhỏ CB. EA cắt CD tại F, ED cắt AB tại M.

a) Các tam giác CEF và EMB là những tam giác gì?

Xem đáp án » 20/09/2022 101

Câu hỏi mới nhất

Xem thêm »
Xem thêm »