Trên một mảnh đất tăng gia trồng xu hào của một nông trường, các bác nông dân muốn trồng xu hào theo cách tiết kiệm đất và đạt số lượng cây trồng nhiều nhất (Tất nhiên không được quên điều kiện cần thiết về khoảng cách giữa hai cây để giúp cây có thể phát triển và cho thu hoạch được). Có hai phương án trồng xu hào được đưa ra như sau:
Chắc nhiều bạn sẽ trả lời các trồng như hình 1 là hợp lí nhất, lợi nhất. Tuy nhiên sự thật không phải vậy. Bằng công cụ hình học sơ cấp, chúng ta sẽ chứng minh được rằng cách trồng ở hình 2 mới là tối ưu theo yêu cầu đề bài.
Thật vậy, giả sử khoảng đất xung quanh mỗi gốc cây để cho cây sống và phát triển là đường tròn có đường kính bằng đơn vị dài. Thế thì, giữa 4 cây trồng có một khoảng đất bỏ phí. Ở hình 1 đó là 1 “tứ giác đều cong” (tứ giác có 4 cung tròn bằng nhau), ở hình 2 là 2 “tam giác đều cong” (tam giác có 2 cung tròn bằng nhau). Ta hãy xét với hai cách trồng thì số đất bỏ phí nào ít hơn.
Diện tích của tứ giác đều cong bằng diện tích hình vuông trừ diện tích hình tròn, nên bằng: (đơn vị diện tích).
Diện tích 2 tam giác đều cong bằng diện tích hình thoi trừ đi diện tích hình tròn nên bằng: (đơn vị diện tích).
Tỉ số:
Vậy diện tích đất bỏ phí trong 4 cây trồng theo hình 1 gấp hơn 2 lần rưỡi diện tích đất bỏ phí trong 4 cây trồng theo hình 2.
Bây giờ ta xét số cây trồng theo cách nào được nhiều hơn. Mới thoạt nhìn chắc các bạn cho rằng trồng theo cách 2 được ít cây hơn vì cứ 2 hàng lại thiệt đi một cây. Nhưng đó chỉ là cách “Bỏ con săn sắt bắt con cá rô” đấy các bạn ạ. Nếu các bạn không tin chúng ta hãy tính thử.
Trong vườn 2, khoảng cách giữa hai hàng ngang là bằng chiều cao của tam giác đều nên bằng đơn vị dài.
Trong vườn 1, khoảng cách giữa hai hàng ngang là 1 đơn vị dài, do đó trồng theo cách 2 lợi được 1 khoảng đất là:
(đơn vị dài).
Nói cách khác tức là cứ trung bình khoảng 7 hàng ngang thì cách trồng ở vườn 2 lợi hơn cách trồng ở vườn 1 là 1 hàng.
Để cụ thể giả sử số cây trồng mỗi hàng ngang là 15 cây thế thì cứ trồng 7 hàng thì theo cách 2 lợi được 15 cây nhưng phải bỏ bớt đi . cây (ở các hàng 2, 4, 5) nên còn lợi 12 cây.
Do đó nếu diện tích đất trồng càng rộng thì rõ ràng theo cách 2 (ở hình 2) càng trồng được nhiều cây và càng tiết kiện được đất.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Ngày 4/4/1918, một đạo luật của quốc hội Hoa Kỳ cho phép thêm một ngôi sao vào lá cờ khi có một bang nữa được nhận vào liên bang. Năm 1959 có 48 bang. Vì 48=6x8 nên các ngôi sao được sắp xếp một cách đẹp đẽ thành 6 hàng, mỗi hàng 8 sao. Năm 1959 có bang Alaska gia nhập liên bang nên có 49 bang. Vì 49=7x7 nên các ngôi sao được sắp xếp thành 7 hàng, mỗi hàng có 7 sao. Năm 1960 có thêm bang Hawaii, trên lá cờ của Hoa Kỳ phải có 50 ngôi sao. Vì 50=5x6+4x5 nên người ta quyết định xếp các ngôi sao thành 5 hàng 6 ngôi sao, đan xen với 4 hàng 5 sao, điều này đạt đến sự cân đối trong việc bố trí các ngôi sao như ta thấy trên lá cờ của Hoa Kỳ hiện nay như hình vẽ.
Một câu hỏi xuất hiện một cách tự nhiên là: Người ta sẽ xếp các ngôi sao như thế nào nếu có thêm một bang nữa (51 bang)?
Tìm một ứng dụng sắp xếp theo kiểu như hình 4 nói trên tròn thực tế.
Trong một nhà máy, các anh thợ công nhân cần cắt một tấm tôn ra nhiều miếng tròn, đường kính . Bạn hãy cắt sao cho được nhiều miếng tròn nhất?