Giải các phương trình sau:
a) 3(x – 5) + 2(x + 7) = x + 11.
b) x2 – 4 + 3x(x + 2) = 0.
c) x2 + 3x – 18 = 0.
d)
a) 3(x – 5) + 2(x + 7) = x + 11
Û 3x – 15 + 2x + 14 = x + 11
Û 5x – 1 = x + 11
Û 5x – x = 11 + 1
Û 4x = 12
Û x = 3
Vậy tập nghiệm của phương trình là S = {3}.b) x2 – 4 + 3x(x + 2) = 0
Û (x – 2). (x + 2) + 3x(x + 2) = 0
Û (x + 2). [(x – 2) + 3x] = 0
Û (x + 2). (4x – 2) = 0
Vậy tập nghiệm của phương trình là .
c) x2 + 3x – 18 = 0
Û x2 – 3x + 6x – 18 = 0
Û (x2 – 3x) + (6x – 18) = 0
Û x (x – 3) + 6(x – 3) = 0
Û (x – 3)(x + 6) = 0
Vậy tập nghiệm của phương trình là S = {– 6; 3}.
d)
ĐKXĐ:
Khi đó phương trình đã cho trở thành:
=> (x – 3)(2x – 3) + (x – 5)(–2 – x) – 10 = 2(x + 2)(x – 3)
Û 2x2 – 9x + 9 – x2 + 10 + 3x – 10 = 2(x2 – x – 6)
Û x2 – 6x + 9 = 2x2 – 2x – 12
Û 2x2 – x2 – 2x + 6x – 12 – 9 = 0
Û x2 + 4x – 21 = 0
Û x2 + 7x – 3x – 21 = 0
Û (x2 + 7x) – (3x + 21) = 0
Û x(x + 7) – 3(x + 7) = 0
Û (x + 7)(x – 3) = 0
Vậy tập nghiệm của phương trình là S = {– 7; 3}.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tam giác ABC có ba góc nhọn, các đường cao BD và CE cắt nhau ở H.
a) Chứng minh DABD DACE.
b) Chứng minh CH. CE = CD. CA.
c) Kẻ EK ^ AC tại K; DI ^ EC tại I. Chứng minh AH // IK.
d) Chứng minh SEIK ≤ SABC.Giải bài toán bằng cách lập phương trình
Trong đợt dịch Covid tháng 2 – 2021, một siêu thị đã thu mua rau giúp nông dân tỉnh Hải Dương để bán cho người tiêu dùng. Lúc đầu siêu thị dự định bán hết khối lượng rau đó trong vòng 18 ngày. Nhưng thực tế, số lượng người đến mua rau nhiều hơn dự định, vì vậy mỗi ngày siêu thị bán vượt mức 120 kg và đã bán hết khối lượng rau đó sớm hơn dự định 3 ngày. Tính khối lượng rau mà siêu thị đã thu mua.Cho hai số thực khác nhau a, b thỏa mãn:
Tính giá trị của biểu thức: M =Cho phương trình ẩn x (với m là tham số)
m2x + 4m – 3 = m2 + x (1)
a) Giải phương trình với m = 2.
b) Tìm các giá trị của m để phương trình (1) có nghiệm duy nhất.
c) Tìm các giá trị nguyên của m để phương trình (1) có nghiệm duy nhất là số nguyên.