Giải các phương trình sau:
a) 3(x – 1) – 7 = 5(x + 2);
b) ;
c) .a) 3(x – 1) – 7 = 5(x + 2)
Û 3x – 3 – 7 = 5x + 10
Û 5x – 3x = – 3 – 7 – 10
Û 2x = – 20
Û x = (– 20) : 2
Û x = – 10
Vậy tập nghiệm của phương trình đã cho là S = {–10};b)
Û 15x + 5 – (2x + 6) = x + 20
Û 15x + 5 – 2x – 6 = x + 20
Û 15x – 2x – x = 20 – 5 + 6
Û 12x = 21
Vậy tập nghiệm của phương trình là S = ;
c)
Điều kiện xác định của phương trình:
Khi đó phương trình đã cho tương đương với:
Þ x2 – 3x + 2 – (x2 + x) = x – 8
Û x2 – 3x + 2 – x2 – x = x – 8
Û x2 – x2 – 3x– x – x = – 8 – 2
Û – 5x = – 10
Û 5x = 10
Û x = 10 : 5
Û x = 2 (thõa mãn điều kiện)
Vậy tập nghiệm của phương trình đã cho là S ={2}.Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Giải bài toán bằng cách lập phương trình:
Một người dự định đi ô tô từ A đến B với vận tốc 60 km/h. Nhưng thực tế người đó phải đến sớm hơn 30 phút để giải quyết công việc nên đã tăng tốc thêm 20 km/h so với dự định. Tính độ dài quãng đường từ A đến B.Cho tam giác ABC vuông tại A, kẻ tia phân giác cắt AC tại D.
a) Biết BC = 5cm, AB = 3 cm. Tính AC và AD.
b) Qua D kẻ DH vuông góc với BC tại H. Chứng minh ∆ABC ∆HDC từ đó chứng minh CH.CB = CD.CA.
c) E là hình chiếu của A trên BC. Chứng minh .
d) O là giao điểm của BD và AH. Qua B kẻ đường thẳng song song với AH cắt các tia CO và CA lần lượt tại M và N. Chứng minh M là trung điểm của BN.Cho phương trình với m là tham số.
Tìm các số nguyên m để phương trình có nghiệm duy nhất với số tự nhiên.Cho hai biểu thức và với x ≠ 1; x ≠ ±2
a) Tính giá trị biểu thức A khi x = 3;
b) Rút gọn biểu thức B;
c) Tìm giá trị của x để A.B = 1.