Tính chất kết hợp của phép cộng là
Trả lời:
Tính chất kết hợp của phép cộng là:\[(a + b) + c = a + (b + c);\]
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tập hợp \(A = \left\{ { - 3;2;0; - 1;5;7} \right\}\) . Viết tập hợp B gồm các phần tử là số đối của các phần tử trong tập hợp A.
Bạn An nói rằng \[\left( { - 35} \right) + 53 = 0\] ; bạn Hòa nói rằng \[676 + \left( { - 891} \right) > 0\] . Chọn câu đúng.
Kết quả của phép tính \[\left( { - 23} \right) + \left( { - 40} \right) + \left( { - 17} \right)\] là
1. Cộng hai số nguyên cùng dấu
Quy tắc cộng hai số nguyên âm
Muốn cộng hai số nguyên âm, ta cộng phần số tự nhiên của chúng với nhau rồi đặt dấu “-“ trước kết quả.
Ví dụ 1. Tính:
a) (-23) + (-55); b) 43 + 23; c) (-234) + (-546).
Lời giải
a) (-23) + (-55) = - (23 + 55) = - 78;
b) 43 + 23 = 66;
c) (-234) + (-546) = - (234 + 546) = - 780.
2. Cộng hai số nguyên khác dấu
Hai số đối nhau:
Hai số nguyên a và b được gọi là đối nhau nếu a và b nằm khác phía với điểm 0 và có cùng khoảng cách đến gốc 0.
Chú ý:
Ta quy ước số đối của 0 là chính nó.
Tổng của hai số đối nhau luôn bằng 0.
Ví dụ 2. Tìm số đối của -3; 4; -5; 8; -12.
Lời giải
Số đối của – 3 là 3;
Số đối của 4 là -4;
Số đối của – 5 là 5;
Số đối của 8 là – 8;
Số đối của -12 là 12.
Quy tắc cộng hai số nguyên khác dấu:
+ Hai số nguyên đối nhau thì có tổng bằng 0.
+ Muốn cộng hai số nguyên khác dấu (không đối nhau), ta tìm hiệu hai phân số tự nhiên của chúng (số lớn trừ số nhỏ) rồi đặt trước hiệu tìm được dấu của số có phần số tự nhiên lớn hơn.
Ví dụ 3. Thực hiện các phép tính:
a) 312 + (-134); b) (– 254) + 128; c) 2 304 + (-115).
Lời giải
a) 312 + (-134) = 312 – 134 = 178;
b) (– 254) + 128 = - ( 254 – 128) = -128;
c) 2 304 + (-115) = 2 304 – 115 = 2 189.
3. Tính chất của phép cộng
Phép cộng số nguyên có tính chất sau:
+ Giao hoán: a + b = b + a;
+ Kết hợp: (a + b) + c = a + (b + c).
Ví dụ 4. Tính một cách hợp lí:
a) (-350) + (-296) + 50 + 96;
b) (-3) + 5 + (-7) + 5.
Lời giải
a) (-350) + (-296) + 50 + 96
= [(-350) + 50] + [(-296) + 96]
= (-300) + (-200)
= -500.
b) (-3) + 5 + (-7) + 5
= [(-3) + (-7)] + [5 + 5]
= (-10) + 10
= 0.
4. Trừ hai số nguyên
Quy tắc trừ hai số nguyên
Muốn trừ số nguyên a cho số nguyên b, ta cộng số nguyên a với số đối của số nguyên b:
a – b = a + (-b).
Ví dụ 5. Tính:
a) 15 – 7; b) 8 – 9; c) 23 – 154; d) 12 – 125 – 83.
Lời giải
a) 15 – 7 = 8;
b) 8 – 9 = 8 + (-9) = - (9 – 8) = -1;
c) 23 – 154 = - ( 154 – 23) = -131;
d) 12 – 125 – 83
= 12 + (-125) + (-83)
= -(125 – 12) + (-83)
= (-113) + (-83)
= -(113 + 83)
= - 196.
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số chẵn
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 2
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 1