Tỉm giá trị m để phương trình:
a) có 2 nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương.
a) Xét phương trình để phương trình có hai nghiệm trái dấu thì: .
Với , áp dụng hệ thức Vi – ét ta có:
Có nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương suy ra :
trong đó nên .
Từ (1) và (2) suy ra .
Vậy thì phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương.
Chú ý: Đề bài có nghĩa tìm điều kiện để phương trình có 2 nghiệm trái dấu và tổng hai nghiệm âm.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
b) Tìm m để phương trình đã cho có hai nghiệm sao cho nghiệm này bằng ba lần nghiệm kia.
Cho phương trình . Định m để phương trình có 4 nghiệm phân biệt và tổng bình phương tất cả các nghiệm bằng 10
Cho phương trình
a) Xác đinh m để phương trình có nghiệm kép. Tìm nghiệm kép đó
d) Xác định m để phương trình có một nghiệm bằng bình phương nghiệm kia.
Tìm tất cả các số tự nhiên m để phương trình (m là tham số) có nghiệm nguyên.
c) Với điều kiện nào của m thì phương trình có hai nghiệm cùng dấu (trái dấu)
Cho phương trình bậc hai
a) Tìm m để phương trình có hai nghiệm đối nhau.
Tìm m để phương trình ( x là ẩn số, m là tham số) có hai nghiệm , thỏa mãn
Cho phương trình (m là tham số)
a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m.
Cho phương trình
a) Chứng minh phương trình luôn có hai nghiệm phân biệt.