a)
Xét có nên BC vừa là đường cao vừa là đường trung tuyến, do đó cân tại B.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho (O) đường kính AB. Điểm M chuyển động trên (O), ; . Kẻ MH vuông góc với AB. Vẽ đường tròn đường kính MH cắt đường thẳng MA và MB tại C và D . Chứng minh rằng:
a) C ,D , thẳng hàng.
c) Cho AB cố định, C thay đổi sao cho . Chứng minh rằng đường tròn ngoại tiếp tam giác AEF luôn đi qua hai điểm cố định và tâm đường tròn này nằm trên đường thẳng cố định
Gọi M là một điểm bất kỳ trên đường tròn ngoại tiếp ; P,Q,R lần lượt là hình chiếu của M trên các đường thẳng BC, CA và .
Chứng minh rằng:
a) Các điểm cùng thuộc một đường tròn.
Trên cạnh CD của hình vuông ABCD, lấy một điểm M, vẽ đường tròn tâm O đường kính AM. Gọi E là giao điểm của đường tròn tâm (O') đường kính CD. Hai đường tròn cắt nhau tại điểm thứ hai N. Tia DN cắt BC tại P. Chứng minh rằng:
a) Ba điểm thẳng hàng
c) Chứng minh đường tròn ngoại tiếp tam giác ADF tiếp xúc với đường tròn (O)
Cho đường tròn (O), M là điểm ở ngoài (O), hai tiếp tuyến MAvà MB( A, B là hai tiếp tuyến), C là một điểm trên đường tròn tâm M bán kính MA và nằm trong đường tròn (O). Các tia AC và BC cắt đường tròn (O) lần lượt tại E và D.
Chứng minh ba điểm D,O,E thẳng hàng.