b) Với điều kiện nào của tam giác ABC thì tứ giác AMCP là hình chữ nhật; hình thoi; hình vuông?
b) Xét ∆MAN và ∆PCN có:
AN = NC (vì N là trung điểm của AC)
(hai góc đối đỉnh)
MN = NP (vì N là trung điểm MP)
Do đó ∆MAN = ∆PCN (c.g.c).
Suy ra (hai góc tương ứng).
Mà hai góc này ở vị trí so le trong nên suy ra AM // CP nên BM // CP.
Mặt khác, ∆MAN = ∆PCN suy ra AM = CP (hai cạnh tương ứng)
Mà AM = BM (vì M là trung điểm của AB) nên BM = CP.
Tứ giác BMPC có BM // CP và BM = CP nên tứ giác BMCP là hình bình hành.
• Để hình bình hành AMCP là hình chữ nhật thì AC = MP.
Mà BC = MP (vì tứ giác BMCP là hình bình hành).
Do đó AC = BC nên tam giác ABC là tam giác cân tại C.
Vây để hình bình hành AMCP là hình chữ nhật thì tam giác ABC là tam giác cân tại C.
• Để hình bình hành AMCP là hình thoi thì AM = CM hay AM = CM = BM = .
Tam giác ABC có CM là đường trung tuyến ứng với cạnh AB của tam giác ABC.
Mà AM = CM = BM = .
Khi đó tam giác ABC vuông tại C.
Vậy để hình bình hành AMCP là hình thoi thì tam giác ABC vuông tại C.
• Để hình bình hành AMCP là hình vuông thì hình bình hành AMCP là hình chữ nhật có AM = CM.
Do đó, tam giác ABC cân tại C có AM = CM.
Khi đó, tam giác ABC vuông cân tại C.
Vậy để hình bình hành AMCP là hình vuông thì tam giác ABC vuông cân tại C.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình bình hành ABCD. Các tia phân giác của góc A, B, C, D cắt nhau như trên Hình 3.58. Chứng minh rằng EFGH là hình chữ nhật.
Gọi Ou và Ov lần lượt là hai tia phân giác của hai góc kề bù xOy và x’Oy; A là một điểm khác O trên tia Ox. Gọi B và C là chân đường vuông góc hạ từ A lần lượt xuống đường thẳng chứa Ou và Ov. Hỏi tứ giác OBAC là hình gì? Vì sao?
Một khung tre hình chữ nhật có lắp đinh vít tại bốn đỉnh. Khi khung tre này bị xô lệch (do các đinh vít bị lỏng), các góc không còn vuông nữa thì khung đó là hình gì? Tại sao? Hỏi khi nẹp thêm một đường chéo vào khung đó thì nó còn bị xô lệch không?
Cho tam giác ABC; M và N lần lượt là trung điểm của hai cạnh AB và AC. Lấy điểm P sao cho N là trung điểm của đoạn thẳng MP.
a) Hỏi tứ giác AMCP là hình gì? Vì sao?
Cho hình vuông ABCD. Lấy một điểm E trên cạnh CD. Tia phân giác của góc DAE cắt cạnh DC tại M. Đường thẳng qua M vuông góc với AE cắt BC tại N.
Chứng minh DM + BN = MN.