Trong không gian với hệ tọa độ Oxyz cho mặt cầu và mạt phẳng (P): x + y + 2z + 5 = 0. Lấy điểm A di động trên (S) và điểm B di động trên (S) sao cho cùng phương . Tìm giá trị lớn nhất của độ dài đoạn AB.
A.
B.
C. 2 +
D.
Chọn B
+) (S) có tâm I(1;1;1), bán kính R = 2.
+) (P) có VTPT , đường thẳng AB có VTVP .
+) Ta có , suy ra góc giữa AB và (P) bằng 300.
+) Gọi H là hình chiếu của (P). A trên (P). Ta có AB = 2.AH. Do đó AB max khi và chỉ khi AH max
+) Vậy
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu . Tìm tất cả các giá trị thực dương của tham số m để mặt phẳng x - 2y + 2z + m = 0 tiếp xúc với mặt cầu (S)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA = 2a và SA vuông góc với đáy. Tính theo a khoảng cách từ A đến mặt phẳng (SBD).
Cho hình chóp tứ giác đều S.ABCD có góc giữa cạnh bên với đáy một góc 45o. Tính cosin của góc giữa mặt bên và đáy của hình chóp đã cho.
Cho hình nón có đỉnh S có bán kính đáy bằng a và góc ở đỉnh bằng 120o. Thiết diện tạo bởi một mặt phẳng đi qua đỉnh S và hình nón là một tam giác có diện tích lớn nhất bằng: