Cho hàm số bậc ba y = f(x). Hàm số g(x) = f(x + 2) có bảng biến thiên như bên dưới.
Tổng tất cả các giá trị nguyên của tham số m để tập nghiệm của phương trình có 5 phần tử bằngA. 0
B. -3
C. -1
D. 2
Chọn C
Từ gt tìm được có BBT
Phương trình , Đk
TH1:
TH2:
Yêu cầu bài toán
TH3:
Yêu cầu bài toán ó <=> (2) có đúng 3 nghiệm phân biệt
Nếu không có số nguyên nào thỏa mãn
Nếu (3), (4), (5), mỗi pt 1 nghiệm và nghiệm > 3( không thỏa mãn)
Nên có các giá trị m nguyên là
+) có 1 nghiệm > 3( không tm)
(4) <=> f(x) = -3 -> 1 nghiệm > 3 (KTM)
có 3 nghiệm pb trong đó có 1 nghiệm > 2 (KTM)
+) m = -3
+) m = -2
+) m = -1
Vậy m = 2 hoặc m = -3, nên tổng các giá trị của m bằng -1, chọn đáp án C.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Có bao nhiêu giá trị nguyên của tham số sao cho hàm số luôn đồng biến trên khoảng
Trong hệ trục tọa độ Oxyz cho 3 điểm A(5;-2;0), B(4;5;-2) và C(0;3;2). Điểm M di chuyển trên trục Ox. Đặt . Biết giá trị nhỏ nhất của Q có dạng trong đó và b là số nguyên tố. Tính a + b.
Cho hai khối cầu có tổng diện tích bằng tiếp xúc ngoài nhau và cùng tiếp xúc với mặt phẳng (P) lần lượt tại hai điểm A, B. Tính tổng thể tích của hai khối cầu đó biết .
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [0;100] để bất phương trình nghiệm đúng với ?
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách từ A đến mặt phẳng (BDD'B') bằng
Trong mặt phẳng (P) cho tam giác ABC có AB = 1, AC = 2, . Điểm S thay đổi thuộc đường thẳng đi qua A và vuông góc với (P), (S khác A). Gọi B1, C1 lần lượt là hình chiếu vuông góc của A trên SB, SC. Đường kính MN thay đổi của mặt cầu (T) ngoại tiếp khối đa diện ABCB1C1 và I là điểm cách tâm mặt cầu (T) một khoảng bằng ba lần bán kính. Tính giá trị nhỏ nhất của IM + IN.
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi là mặt phẳng đi qua CD’ và tạo với mặt phẳng (A'B'C'D') một góc với . Mặt phẳng chia khối lặp phương thành hai khối đa diện có thể tích là với . Tính V1.