IMG-LOGO

Câu hỏi:

20/07/2024 51

Sử dụng công thức biến đổi tích thành tổng và đặt a + b = u; a − b = v rồi biến đổi các biểu thức sau thành tích: cosu + cosv; cosu – cos v; sinu + sinv; sinu – sinv.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Ta có \(\left\{ \begin{array}{l}a + b = u\\a - b = v\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{u + v}}{2}\\b = \frac{{u - v}}{2}\end{array} \right.\).

Khi đó:

• cosu + cosv = cos(a + b) + cos(a – b)

                       = 2cosa cosb

                       \( = 2\cos \frac{{u + v}}{2}\cos \frac{{u - v}}{2}\).

• cosu – cosv = cos(a + b) – cos(a – b)

                       = –2sina sinb

                       \( = - 2\sin \frac{{u + v}}{2}\sin \frac{{u - v}}{2}\).

• sinu + sinv = sin(a + b) + sin(a – b)

                      = 2sina cosb

                      \( = 2\sin \frac{{u + v}}{2}\cos \frac{{u - v}}{2}\).

• sinu – sinv = sin(a + b) – sin(a – b)

                     = sin(b + a) + sin(b – a)

                      = 2sinb cosa = 2cosa sinb

                      \( = 2\cos \frac{{u + v}}{2}\sin \frac{{u - v}}{2}\).

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính:

A = sin(a – 17°)cos(a + 13°) – sin(a + 13°)cos(a – 17°);

\(B = cos\left( {b + \frac{\pi }{3}} \right)\cos \left( {\frac{\pi }{6} - b} \right) - \sin \left( {b + \frac{\pi }{3}} \right)\sin \left( {\frac{\pi }{6} - b} \right)\).

Xem đáp án » 12/04/2024 125

Câu 2:

Cho \(cos2a = \frac{1}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính: sina, cosa, tana.

Xem đáp án » 12/04/2024 90

Câu 3:

Cho \(\sin a = \frac{2}{{\sqrt 5 }}\). Tính cos2a, cos4a.

Xem đáp án » 12/04/2024 87

Câu 4:

Cho sina + cosa = 1. Tính: sin2a.

Xem đáp án » 12/04/2024 76

Câu 5:

Cho \(\cos a = \frac{2}{3}\). Tính \(B = \cos \frac{{3a}}{2}\cos \frac{a}{2}\).

Xem đáp án » 12/04/2024 71

Câu 6:

Rút gọn biểu thức: \(A = \frac{{\sin 2x}}{{1 + \cos 2x}}\).

Xem đáp án » 12/04/2024 63

Câu 7:

Cho \(\tan \frac{a}{2} = - 2\). Tính tana.

Xem đáp án » 12/04/2024 61

Câu 8:

Tính: \(\sin \frac{\pi }{8},\cos \frac{\pi }{8}\).

Xem đáp án » 12/04/2024 61

Câu 9:

Ở lớp dưới, ta đã làm quen với một số phép tính trong tập hợp các số thực, chẳng hạn: phép tính luỹ thừa với số mũ tự nhiên và những công thức để tính toán hay biến đổi những biểu thức chứa các luỹ thừa như vậy. Việc lấy các giá trị lượng giác của góc lượng giác đã hình thành nên những phép tính mới trong tập hợp các số thực, đó là những phép tính lượng giác.

Ở lớp dưới, ta đã làm quen với một số phép tính trong tập hợp các số thực, chẳng hạn (ảnh 1)

Có hay không những công thức để tính toán hay biến đổi những biểu thức chứa giá trị lượng giác?

Xem đáp án » 12/04/2024 61

Câu 10:

Tính \[\sin \frac{\pi }{{12}}\].

Xem đáp án » 12/04/2024 60

Câu 11:

Khi các biểu thức đều có nghĩa, hãy tính tan (a – b) bằng cách biến đổi \[tan\left( {a - b} \right) = tan\left[ {a + \left( { - b} \right)} \right]\] và sử dụng công thức tan(a + b) có được ở bài trước

Xem đáp án » 12/04/2024 60

Câu 12:

Sử dụng công thức cộng, rút gọn mỗi biểu thức sau:

cos(a + b) + cos(a – b); cos(a + b) – cos(a – b); sin(a + b) + sin(a – b).

Xem đáp án » 12/04/2024 58

Câu 13:

Cho \(\cos a = \frac{3}{5}\) với \(0 < a < \frac{\pi }{2}\). Tính \(\sin \left( {a + \frac{\pi }{6}} \right),cos\left( {a - \frac{\pi }{3}} \right),\tan \left( {a + \frac{\pi }{4}} \right)\).

Xem đáp án » 12/04/2024 58

Câu 14:

Một sợi cáp R được gắn vào một cột thẳng đứng ở vị trí cách mặt đất 14 m. Một sợi cáp S khác cũng được gắn vào cột đó ở vị trí cách mặt đất 12 m. Biết rằng hai sợi cáp trên cùng được gắn với mặt đất tại một vị trí cách chân cột 15 m (Hình 17).

Một sợi cáp R được gắn vào một cột Tìm góc alpha (làm tròn kết quả đến hàng đơn vị theo đơn vị độ) (ảnh 1)

Tìm góc α (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).

Xem đáp án » 12/04/2024 58

Câu 15:

Tính cos(a + b) bằng cách biến đổi cos(a + b) = \(\sin \left[ {\frac{\pi }{2} - \left( {a + b} \right)} \right] = \sin \left[ {\left( {\frac{\pi }{2} - a} \right) - b} \right]\) và sử dụng công thức cộng đối với sin.

Xem đáp án » 12/04/2024 55

Câu hỏi mới nhất

Xem thêm »
Xem thêm »