Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh AD, BC theo thứ tự tại E và F (h.26).
Chứng minh rằng OE = OF
Kiến thức áp dụng
+ Định lý Talet: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.
+ Hệ quả định lý Ta-let : Nếu một đường thẳng cắt hai cạnh (hoặc cạnh kéo dài) của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Tính x trong hình 24 và làm tròn kết quả đến chữ số thập phân thứ nhất.
Hình 24
Cho tam giác ABC với đường trung tuyến AM. Tia phân giác của góc AMB cắt cạnh AB ở D, tia phân giác của góc AMC cắt cạnh AC ở E. Chứng minh rằng DE // BC (h.25).
Hình 25
Vẽ tam giác ABC, biết:
AB = 3cm; AC = 6cm; = 100o.
Dựng đường phân giác AD của góc A (bằng compa, thước thẳng), đo độ dài các đoạn thẳng DB, DC rồi so sánh các tỉ số (h.20).
Tam giác ABC có độ dài các cạnh AB = m, AC = n và AD là đường phân giác. Chứng minh rằng tỉ số diện tích của tam giác ABD và diện tích của tam giác ACD bằng .
a) Cho tam giác ABC với đường trung tuyến AM và đường phân giác trong AD. Tính diện tích tam giác ADM, biết AB = m, AC = n (n > m) và diện tích tam giác ABC là S.
b) Khi cho n = 7cm, m = 3cm, hỏi rằng diện tích tam giác ADM chiếm bao nhiêu phần trăm diện tích tam giác ABC?
Đố: Hình 27 cho biết có 6 góc bằng nhau:
Hình 27
Kích thước các đoạn thẳng đã được ghi trên hình. Hãy thiết lập những giá trị từ các kích thước đã cho.
Tam giác ABC có AB = 5cm, AC = 6cm và BC = 7cm. Tia phân giác của góc BAC cắt cạnh BC tại E. Tính các đoạn EB, EC.
Cho hình thang ABCD (AB // CD).
Đường thẳng a song song với DC, cắt các cạnh AD và BC theo thứ tự tại E và F. Chứng minh rằng:
;
;