Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

20/07/2024 215

Cho B = (x2 + 3)2 – x2(x2 + 3) – 3(x + 1)(x – 1). Chọn câu đúng.

A. B < 12

B. B > 13

C. 12 < B < 14

D. 11 < B < 13

Đáp án chính xác
 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Ta có B = (x2 + 3)2 – x2(x2 + 3) – 3(x + 1)(x – 1).

          = (x2)2 +2.x2.3 + 32 – (x2.x2 + x2.3) – 3(x2 – 1)    

          = x4 + 6x2 + 9 – x4 – 3x2 – 3x2 + 3 = 12

Đáp án cần chọn là: D

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn rồi tính giá trị các biểu thức

A = (3x – 2)2 + (3x + 2)2 + 2(9x2 – 6) tại 

Xem đáp án » 18/02/2022 262

Câu 2:

Tìm x biết (3x – 1)2 + 2(x + 3)2 + 11(1 + x)(1 – x) = 6

Xem đáp án » 18/02/2022 254

Câu 3:

Rút gọn biểu thức B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7) ta được

Xem đáp án » 18/02/2022 253

Câu 4:

Rút gọn biểu thức A = 5(x + 4)2 + 4(x – 5)2 – 9(4 + x)(x – 4), ta được

Xem đáp án » 18/02/2022 249

Câu 5:

Rút gọn biểu thức A = (3x – 1)2 – 9x(x + 1) ta được

Xem đáp án » 18/02/2022 224

Câu 6:

Tìm x biết (x – 6)(x + 6) – (x + 3)2 = 9

Xem đáp án » 18/02/2022 223

Câu 7:

Cho M = 4(x + 1)2 + (2x + 1)2 – 8(x – 1)(x + 1) – 12x và

N = 2(x – 1)2 – 4(3 + x)2 + 2x(x + 14).

Tìm mối quan hệ giữa M và N

Xem đáp án » 18/02/2022 222

Câu 8:

Chọn câu đúng

Xem đáp án » 18/02/2022 212

Câu 9:

Có bao nhiêu giá trị x thỏa mãn (2x + 1)2 – 4(x + 3)2 = 0

Xem đáp án » 18/02/2022 211

Câu 10:

Có bao nhiêu giá trị x thỏa mãn (2x – 1)2 – (5x – 5)2 = 0

Xem đáp án » 18/02/2022 205

Câu 11:

Biểu thức (a – b – c)2 bằng

Xem đáp án » 18/02/2022 204

Câu 12:

Biểu thức (a + b + c)2 bằng

Xem đáp án » 18/02/2022 201

Câu 13:

Chọn câu đúng

Xem đáp án » 18/02/2022 198

LÝ THUYẾT

1. Bình phương của một tổng.

Bình phương của một tổng bằng bình phương số thứ nhất cộng hai lần tích số thứ nhất và số thứ hai cộng bình phương số thứ hai.

Với A, B là các biểu thức tùy ý, ta có: (A + B)2 = A2 + 2AB + B2.

2. Bình phương của một hiệu.

Bình phương của một hiệu bằng bình phương số thứ nhất trừ hai lần tích số thứ nhất và số thứ hai cộng bình phương số thứ hai.

Với A, B là các biểu thức tùy ý, ta có: (A  B)2 = A2  2AB + B2.

3. Hiệu hai bình phương.

Hiệu hai bình phương bằng tích của hiệu với tổng của chúng.

Với A, B là các biểu thức tùy ý, ta có: A2   B2 = (A  B)(A + B).

Câu hỏi mới nhất

Xem thêm »
Xem thêm »