Số nghiệm nguyên dương của phương trình 4|2x – 1| - 3 = 1 là:
A. 1
B. 0
C. 2
D. 3
4|2x – 1| - 3 = 1
4|2x – 1| = 1 + 3
4|2x – 1| = 4
|2x – 1| = 1
Do x nguyên dương nên phương trình chỉ có một nghiệm x = 1 nguyên dương
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Gọi x0 là nghiệm của phương trình 3(x – 2) – 2x(x + 1) = 3 – 2x2. Chọn khẳng định đúng.
Cho hai phương trình 7(x – 1) = 13 + 7x (1) và (x + 2)2 = x2+ 2x + 2(x + 2) (2). Chọn khẳng định đúng
Giả sử x0 là một số thực thỏa mãn 3 – 5x = -2. Tính giá trị của biểu thức S = ta đươc
Gọi x0 là nghiệm của phương trình 2.(x – 3) + 5x(x – 1) = 5x2. Chọn khẳng định đúng.
Gọi x0 là một nghiệm của phương trình 5x – 12 = 4 - 3x. Hỏi x0 còn là nghiệm của phương trình nào dưới đây?
Cho hai phương trình 3(x – 1) = -3 + 3x (1) và (2 – x)2 = x2 + 2x – 6(x + 2) (2). Chọn khẳng định đúng
Tính tổng các nghiệm của phương trình |3x + 6| - 2 = 4, biết phương trình có 2 nghiệm phân biệt.
1. Phương trình bậc nhất một ẩn
- Định nghĩa phương trình bậc nhất một ẩn: Phương trình có dạng ax + b = 0, với a và b là hai số đã cho và a ≠ 0, được gọi là phương trình bậc nhất một ẩn.
Ví dụ 1.
4x – 3 = 2x là phương trình bậc nhất với ẩn x;
2(y – 1) + 8 = y + 3 là phương trình bậc nhất với ẩn y.
2. Hai quy tắc biến đổi phương trình
a) Quy tắc chuyển vế
Trong một phương trình, ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.
Ví dụ 2. Giải phương trình: x + 12 = 0.
Lời giải:
x + 12 = 0
x = 0 – 12
x = –12.
Vậy phương trình có một nghiệm duy nhất x = –12.
b) Quy tắc nhân với một số
Trong một phương trình, ta có thể nhân (chia) cả hai vế với cùng một số khác 0.
Ví dụ 3. Giải các phương trình:
a) ;
b) −1,25x = 4.
Lời giải:
a)
x = 5 . 3
x = 15.
Vậy phương trình có một nghiệm duy nhất x = 15.
b) −1,25x = 4
x = 4 : (−1,25)
x = 3,2.
Vậy phương trình có một nghiệm duy nhất x = 3,2.
3. Cách giải phương trình bậc nhất một ẩn
Cách giải phương trình bậc nhất một ẩn có dạng: ax + b = 0
Bước 1: Chuyển vế ax = − b.
Bước 2: Chia hai vế cho a, ta được: x = .
Bước 3: Kết luận tập nghiệm: S = .
Ta có thể trình bày ngắn gọn như sau:
ax + b = 0 ax = −b x = .
Vậy phương trình có tập nghiệm là S = .
Ví dụ 4. Giải các phương trình: .
Lời giải:
.
Vậy phương trình có tập nghiệm là S = .