Phương trình 3sin2x+4cos2x+5cos2017x=0 có số họ nghiệm là:
A. 1
B. 2
C. 3
D. Vô nghiệm
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
I. Phương trình bậc nhất đối với một hàm số lượng giác
1. Định nghĩa.
Phương trình bậc nhất đối với một hàm số lượng giác là phương trình có dạng:
at + b = 0 (1)
Trong đó; a, b là các hằng số (a ≠ 0) và t là một trong các hàm số lượng giác.
- Ví dụ 1.
a) – 3sinx + 8 = 0 là phương trình bậc nhất đối với sinx.
b) 6cotx + 10 = 0 là phương trình bậc nhất đối với cotx.
2. Cách giải
Chuyển vế rồi chia hai vế của phương trình (1) cho a, ta đưa phương trình (1) về phương trình lượng giác cơ bản.
- Ví dụ 2. Giải các phương trình sau:
a) 2sinx – 4 = 0;
b) .
Lời giải:
a) Từ 2sinx – 4 = 0, chuyển vế ta có: 2sinx = 4 (2)
Chia 2 vế của phương trình (2) cho 2, ta được: sinx = 2.
Vì 2 > 1 nên phương trình đã cho vô nghiệm.
b) Từ , chuyển vế ta có: (3)
Chia cả 2 vế của phương trình (3) cho ta được: .
3. Phương trình đưa về phương trình bậc nhất đối với một hàm số lượng giác.
- Phương pháp:
Sử dụng các công thức biến đổi lượng giác đã được học để đưa về phương trình bậc nhất đối với hàm số lượng giác hoặc đưa về phương trình tích để giải phương trình.
- Ví dụ 3. Giải các phương trình:
a) sin2x – cosx = 0;
b) – 4sinx. cosx. cos2x = 1.
Lời giải:
a) Ta có: sin2x – cosx = 0
2sinx. cosx – cosx = 0
cosx. (2sinx – 1) = 0
+ Với cosx = 0 thì
+ Với 2sinx – 1 = 0
Vậy phương trình đã cho có các nghiệm là: ; và .
b) – 4sinx. cosx. cos2x = 1.
– 2sin2x. cos2x = 1 (vì sin2x = 2sinx. cosx)
– sin4x = 1 sin 4x = – 1
Vậy nghiệm của phương trình đã cho là .
II. Phương trình bậc hai đối với một hàm số lượng giác
1. Định nghĩa.
Phương trình bậc hai đối với một hàm số lượng giác là phương trình có dạng:
at^2 + bt + c = 0
Trong đó a; b; c là các hằng số (a ≠ 0) và t là một trong các hàm số lượng giác.
- Ví dụ 4.
a) 3cos2x – 5cosx + 2 = 0 là phương trình bậc hai đối với cosx.
b) – 10tan2x + 10tanx = 0 là phương trình bậc hai đối với tanx.
2. Cách giải.
Đặt biểu thức lượng giác làm ẩn phụ và đặt điều kiện cho ẩn phụ (nếu có) rồi giải phương trình theo ẩn phụ này.
Cuối cùng ta đưa về việc giải các phương trình lượng giác cơ bản.
- Ví dụ 5. Giải phương trình: 2cos2x – 4 cosx = 0.
Lời giải:
Đặt t = cosx với điều kiện: – 1 ≤ t ≤ 1 .
Ta được phương trình bậc hai ẩn t là: 2t^2 – 4t = 0. .
Trong hai nghiệm này chỉ có nghiệm t = 0 thỏa mãn.
Với t = 0 thì cos x = 0
Vậy phương trình đã cho có nghiệm là .
3. Phương trình đưa về dạng phương trình bậc hai đối với một hàm số lượng giác.
- Phương pháp:
Sử dụng các công thức lượng giác đã học để biến đổi đưa về dạng phương trình bậc hai đối với một hàm số lượng giác.
- Ví dụ 6. Giải phương trình 3sin^2x – 6cosx – 3 = 0.
Lời giải:
Vì sin2x = 1 – cos2x nên phương trình đã cho tương đương:
3(1 – cos2x) – 6cosx – 3 = 0
– 3cos2 x – 6cosx = 0 (*)
Đăt t = cosx với điều kiện: – 1 ≤ t ≤ 1 , phương trình (*) trở thành:
– 3t2 – 6t = 0 .
Trong hai nghiệm này, chỉ có nghiệm t = 0 thỏa mãn.
Với t = 0 thì; cosx = 0 .
Vậy phương trình đã cho có nghiệm là .
- Ví dụ 7. Giải phương trình: sin2x – 3sinx. cosx + 2cos2x = 0 (1).
Lời giải:
+ Nếu cosx = 0 thì sin2x = 1 nên phương trình (1) có :
VT(1) = 1 và VP(1) = 0
Suy ra, cos x = 0 không thỏa mãn phương trình (1) . Vậy cosx ≠ 0.
+ Vì cosx ≠ 0 nên chia hai vế của phương trình (1) cho cos2 x, ta được:
tan2x – 3tanx + 2 = 0 (2)
Đặt t = tanx, phương trình (2) trở thành: t2 – 3t + 2 = 0
Với t = 1 thì tanx = 1 .
Với t = 2 thì tanx = 2 .
Vậy phương trình đã cho có các nghiệm là và .
III. Phương trình bậc nhất đối với sinx và cosx.
1. Công thức biến đổi biểu thức a.sinx + b.cosx
Ta có công thức biến đổi sau:
(1)
Trong đó; .
2. Phương trình dạng: asinx + b.cosx = c.
Xét phương trình: asinx + bcosx = c (2)
Với a; b; c ; a, b không đồng thời bằng 0.
- Nếu a = 0 ; b ≠ 0 hoặc a ≠ 0; b = 0 phương trình (2) có thể đưa ngay về phương trình lượng giác cơ bản.
- Nếu a ≠ 0; b ≠ 0, ta áp dụng công thức (1).
Ví dụ 8. Giải phương trình: .
Lời giải:
Theo công thức (1) ta có:
Trong đó; . Ta lấy thì ta có:
Khi đó;
Vậy phương trình có nghiệm là .