Chủ nhật, 05/01/2025
IMG-LOGO

Câu hỏi:

20/07/2024 1,788

Cho hình bình hành ABCD có tâm đối xứng là O, E là điểm bất kỳ trên đoạn OD. Gọi F là điểm đối xứng của C qua E. Xác định vị trí điểm E trên OD để hình thang ODFA là hình bình hành.

A. E là chân đường vuông góc kẻ từ C đến OD

B. E là trung điểm của OD

Đáp án chính xác

C. Cả A, B đều sai

D. Cả A, B đều đúng

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Để hình thang ODFA là hình bình hành thì ta cần OD = AF mà OE = 12AF (cmt) nên OE = 12OD

Hay E là trung điểm của OD

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. O là một điểm bất kì nằm trong tứ giác ABCD. Gọi E, F, G, H theo thứ tự là điểm đối xứng với O qua M, N, P, Q. Tứ giác EFGH là hình gì?

Xem đáp án » 13/03/2022 2,147

Câu 2:

Cho tam giác ABC. Gọi D là điểm đối xứng với B qua A, E là điểm đối xứng với C qua A. Lấy các điểm I, K theo thứ tự thuộc các đoạn thẳng DE, BC sao cho DI = BK. Chọn câu đúng.

Xem đáp án » 13/03/2022 1,717

Câu 3:

Cho hình bình hành ABCD có tâm đối xứng là O, E là điểm bất kỳ trên đoạn OD. Gọi F là điểm đối xứng của C qua E. Tứ giác ODFA là hình gì?

Xem đáp án » 13/03/2022 1,102

Câu 4:

Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. O là một điểm bất kì nằm trong tứ giác ABCD. Gọi E, F, G, H theo thứ tự là điểm đối xứng với O qua M, N, P, Q. Tứ giác MNPQ là hình gì?

Xem đáp án » 13/03/2022 815

Câu 5:

Cho hình bình hành ABCD, O là giao điểm của hai đường chéo, Một đường thẳng đi qua O cắt các cạnh AB và CD theo thứ tự ở M và N. Chọn khẳng định đúng.

Xem đáp án » 13/03/2022 412

LÝ THUYẾT

1. Hai điểm đối xứng qua một điểm

Định nghĩa: Hai điểm gọi là đối xứng với nhau qua điểm O nếu O là trung điểm của đoạn thẳng nối hai điểm đó.

Ví dụ:

                                   

Hai điểm A và A’ gọi là hai điểm đối xứng với nhau qua điểm O.

Quy ước: Điểm đối xứng với điểm O qua điểm O cũng là điểm O.

2. Hai hình đối xứng qua một điểm

Định nghĩa: Hai hình gọi là đối xứng với nhau qua điểm O nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua điểm O và ngược lại.

Ví dụ:

                               

Các điểm A’, B’, C’ lần lượt đối xứng với các điểm A, B, C qua O.

Khi đó, điểm O gọi là tâm đối xứng của tam giác ABC và tam giác A’B’C’.

3. Hình có tâm đối xứng

Định nghĩa: Điểm O gọi là tâm đối xứng qua hình H nếu điểm đối xứng với mỗi điểm thuộc hình H qua điểm O cũng thuộc hình H.

Ví dụ:

                                               

Chữ cái in hoa S có tâm đối xứng O (như hình vẽ).

Điểm đối xứng của mỗi điểm thuộc chữ in hoa S qua tâm đối xứng O đều thuộc chữ cái in hoa S.

Định lí: Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.

Ví dụ: Hình bình hành ABCD, hai đường AC và BD cắt nhau tại điểm O.

Khi đó, O là tâm đối xứng của hình bình hành ABCD.

                                               

Câu hỏi mới nhất

Xem thêm »
Xem thêm »