Chủ nhật, 05/01/2025
IMG-LOGO

Câu hỏi:

20/07/2024 815

Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. O là một điểm bất kì nằm trong tứ giác ABCD. Gọi E, F, G, H theo thứ tự là điểm đối xứng với O qua M, N, P, Q. Tứ giác MNPQ là hình gì?

A. Hình thang

B. Hình bình hành

Đáp án chính xác

C. Hình thang cân

D. Hình thang vuông

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Nối AC.

Xét tam giác DAC có QP là đường trung bình nên QP // AC; QP = 12AC (1)

Xét tam giác BAC có MN là đường trung bình nên MN // AC; MN = 12AC (2)

Từ (1) và (2) suy ra MN = PQ = (= 12AC); MN // PQ nên tứ giác MNPQ là hình bình hành.

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. O là một điểm bất kì nằm trong tứ giác ABCD. Gọi E, F, G, H theo thứ tự là điểm đối xứng với O qua M, N, P, Q. Tứ giác EFGH là hình gì?

Xem đáp án » 13/03/2022 2,146

Câu 2:

Cho hình bình hành ABCD có tâm đối xứng là O, E là điểm bất kỳ trên đoạn OD. Gọi F là điểm đối xứng của C qua E. Xác định vị trí điểm E trên OD để hình thang ODFA là hình bình hành.

Xem đáp án » 13/03/2022 1,787

Câu 3:

Cho tam giác ABC. Gọi D là điểm đối xứng với B qua A, E là điểm đối xứng với C qua A. Lấy các điểm I, K theo thứ tự thuộc các đoạn thẳng DE, BC sao cho DI = BK. Chọn câu đúng.

Xem đáp án » 13/03/2022 1,716

Câu 4:

Cho hình bình hành ABCD có tâm đối xứng là O, E là điểm bất kỳ trên đoạn OD. Gọi F là điểm đối xứng của C qua E. Tứ giác ODFA là hình gì?

Xem đáp án » 13/03/2022 1,102

Câu 5:

Cho hình bình hành ABCD, O là giao điểm của hai đường chéo, Một đường thẳng đi qua O cắt các cạnh AB và CD theo thứ tự ở M và N. Chọn khẳng định đúng.

Xem đáp án » 13/03/2022 412

LÝ THUYẾT

1. Hai điểm đối xứng qua một điểm

Định nghĩa: Hai điểm gọi là đối xứng với nhau qua điểm O nếu O là trung điểm của đoạn thẳng nối hai điểm đó.

Ví dụ:

                                   

Hai điểm A và A’ gọi là hai điểm đối xứng với nhau qua điểm O.

Quy ước: Điểm đối xứng với điểm O qua điểm O cũng là điểm O.

2. Hai hình đối xứng qua một điểm

Định nghĩa: Hai hình gọi là đối xứng với nhau qua điểm O nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua điểm O và ngược lại.

Ví dụ:

                               

Các điểm A’, B’, C’ lần lượt đối xứng với các điểm A, B, C qua O.

Khi đó, điểm O gọi là tâm đối xứng của tam giác ABC và tam giác A’B’C’.

3. Hình có tâm đối xứng

Định nghĩa: Điểm O gọi là tâm đối xứng qua hình H nếu điểm đối xứng với mỗi điểm thuộc hình H qua điểm O cũng thuộc hình H.

Ví dụ:

                                               

Chữ cái in hoa S có tâm đối xứng O (như hình vẽ).

Điểm đối xứng của mỗi điểm thuộc chữ in hoa S qua tâm đối xứng O đều thuộc chữ cái in hoa S.

Định lí: Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.

Ví dụ: Hình bình hành ABCD, hai đường AC và BD cắt nhau tại điểm O.

Khi đó, O là tâm đối xứng của hình bình hành ABCD.

                                               

Câu hỏi mới nhất

Xem thêm »
Xem thêm »