Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

23/07/2024 2,462

Trong các mệnh đề sau đây, mệnh đề nào là đúng?

A. Một đường thẳng cắt hai đường thẳng cho trước thì cả ba đường thẳng đó cùng nằm trong một mặt phẳng

B. Ba đường thẳng cắt nhau từng đôi một và không nằm trong một mặt phẳng thì đồng quy

Đáp án chính xác

C. Một đường thẳng cắt hai đường thẳng cắt nhau cho trước thì cả ba đường thẳng đó cùng nằm trong một mặt phẳng

D. Ba đường thẳng cắt nhau từng đôi một thì cùng nằm trong một mặt phẳng

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án A sai vì nếu đường thẳng đó cắt mặt phẳng chứa hai đường thẳng còn lại tại chính giao điểm của hai đường thẳng thì ba đường thẳng đó đồng quy.

Do đó đáp án C và D cũng sai.

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình lập phương ABCD.A'B'C'D'. Chọn khẳng định sai?

Xem đáp án » 02/08/2021 31,959

Câu 2:

Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ ABEG?

Xem đáp án » 02/08/2021 15,977

Câu 3:

Trong không gian cho ba đường thẳng phân biệt a,b,c. Khẳng định nào sau đây đúng? 

Xem đáp án » 02/08/2021 14,482

Câu 4:

Trong các mệnh đề sau, mệnh đề nào đúng?

Xem đáp án » 02/08/2021 14,222

Câu 5:

Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD  bằng:

Xem đáp án » 02/08/2021 9,847

Câu 6:

Trong các khẳng định sau, khẳng định nào đúng ?

Xem đáp án » 02/08/2021 8,100

Câu 7:

Cho hình hộp ABCD.A′B′C′D′. Giả sử tam giác AB′C và A′DC′ đều có 3 góc nhọn. Góc giữa hai đường thẳng AC và A′D là góc nào sau đây?

Xem đáp án » 02/08/2021 7,173

Câu 8:

Cho hình lập phương ABCD.EFGH có cạnh bằng a . Tính AB.EG

Xem đáp án » 02/08/2021 6,253

Câu 9:

Trong các mệnh đề dưới đây mệnh đề đúng là?

Xem đáp án » 02/08/2021 5,294

Câu 10:

Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ ABDH?

Xem đáp án » 02/08/2021 5,226

Câu 11:

Trong các mệnh đề sau đây, mệnh đề nào là đúng?

Xem đáp án » 02/08/2021 5,066

Câu 12:

Cho hai đường thẳng phân biệt a,b và mặt phẳng (P) , trong đó a⊥(P). Mệnh đề nào sau đây là sai?

Xem đáp án » 02/08/2021 1,794

Câu 13:

Cho tứ diện ABCD có AB vuông góc với CD. Mặt phẳng (P) song song với AB và CD lần lượt cắt BC,DB,AD,AC tại M,N,P,Q. Tứ giác MNPQ là hình gì?

Xem đáp án » 02/08/2021 1,565

Câu 14:

Cho tứ diện ABCD có AB=AC=AD và BAC^=BAD^=600. Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vectơ IJCD?

Xem đáp án » 02/08/2021 969

LÝ THUYẾT

I. Tích vô hướng của hai vecto trong không gian.

1. Góc giữa hai vecto trong không gian.

- Định nghĩa.  Trong không gian, cho là hai vecto khác vecto- không. Lấy một điểm A bất kì, gọi B và C là hai điểm sao choAB=u;  AC  =v  . Khi đó, ta gọi góc BAC^  (00  BAC^  1800) là góc giữa hai vecto u;  v trong không gian.

Kí hiệu là ( u;  v).

Bài 2 : Hai đường thẳng vuông góc (ảnh 1)

2. Tích vô hướng của hai vecto trong không gian.

- Định nghĩa:

Trong không gian có hai vecto u;  v đều khác vecto- không . Tích vô hướng của hai vecto u;  v là một số, kí hiệu là u;  v, được xác định bởi công thức:

u.v  =u.v.cos u;  v

Trường hợp u=  0 hoặc v=  0 ta quy ước: u.  v = 0.

Ví dụ 1. Cho hình chóp S.ABC có SA= SB= SC và ASB^  =  BSC^  =  CSA^. Hãy xác định góc giữa cặp vectơ SC và AB?

Lời giải :

Bài 2 : Hai đường thẳng vuông góc (ảnh 1)

Ta có SC.AB=SC.SBSA=SC.SBSC.SA

=SC.SB.cosSC.SBSC.SA.cosSC.SA=SC.SB.cosBSC^SC.SA.cosASC^

Vì SA= SB= SC và ASB^  =  BSC^  =  CSA^

SC.AB=0

Ta lại có: SC.SA=SC.SA.cosSC,SA

cosSC,SA=0

Do đó SC;  AB=900.

II. Vecto chỉ phương của đường thẳng.

1. Định nghĩa.

Nếu a khác vecto  - không được gọi là vecto chỉ phương của đường thẳng d nếu giá của vecto  a song song hoặc trùng với đường thẳng d.

Bài 2 : Hai đường thẳng vuông góc (ảnh 1)

2. Nhận xét.

a) Nếu a là vecto chỉ phương của đường thẳng d thì vecto ka   (k0) cũng là vecto chỉ phương của d.

b) Một đường thẳng d trong không gian hoàn toàn được xác định nếu biết một điểm A thuộc đường thẳng d và một vecto chỉ phương của nó.

c) Hai đường thẳng song song với nhau khi và chỉ khi chúng là hai đường thẳng phân biệt và có hai vecto chỉ phương cùng phương.

III. Góc giữa hai đường thẳng trong không gian.

1. Định nghĩa:

Góc giữa hai đường thẳng a và b trong không gian là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm và lần lượt song song với a và b.

Bài 2 : Hai đường thẳng vuông góc (ảnh 1)

2. Nhận xét.

a) Để xác định góc giữa hai đường thẳng a và b ta có thể lấy điểm O thuộc một trong hai đường thẳng đó rồi vẽ một đường thẳng qua O và song song với đường thẳng còn lại.

b) Nếu u là vecto chỉ phương của đường thẳng a và v là vecto chỉ phương của đường thẳng b và (u;  v)=  α thì góc giữa hai đường thẳng a và b bằng α nếu  00α900 và bằng 1800α nếu 900<α1800 .

Nếu a và b song song hoặc trùng nhau thì góc giữa chúng bằng 0°.

Ví dụ 2. Cho hình lập phương ABCD.A’B’C’D’.  Tính góc giữa AC và DA’

Lời giải:

Bài 2 : Hai đường thẳng vuông góc (ảnh 1)

Gọi a là độ dài cạnh hình lập phương.

Khi đó, tam giác AB’C đều (AB’ = B’C= CA = a2)

Do đó B'CA^  =600.

Lại có, DA’ song song CB’  nên  

(AC ; DA’) = (AC ; CB’) =B'CA^  =600 .

IV. Hai đường thẳng vuông góc.

1. Định nghĩa.

Hai đường thẳng được gọi là vuông góc nếu góc giữa chúng bằng 90°.

Ta kí hiệu hai đường thẳng a và b vuông góc với nhau là a    b.

2. Nhận xét

a) Nếu u;  v lần lượt là các vecto chỉ phương của hai đường thẳng a và b thì a    bu.v   =0.

b) Cho hai đường thẳng song song. Nếu một đường thẳng vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.

c) Hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau.

Ví dụ 3.  Cho tứ diện ABCD có AB= AC= AD  và BAC^  =  BAD^=600;  CAD^=  900. Gọi I và J lần lượt là trung điểm của AB  và CD. Chứng minh hai đường thẳng AB và IJ vuông góc với nhau.

Lời giải:

Bài 2 : Hai đường thẳng vuông góc (ảnh 1)

Xét tam giác ICD có J là trung điểm đoạn CD  IJ=12IC+ID.

Tam giác ABC có AB = AC và  BAC^=600nên tam giác ABC đều

CIAB.  (1)

Tương tự, ta có tam giác ABD  đều nên DI  AB.  ( 2)

Từ  (1) và (2) ta có : IJ.AB=12IC+ID.AB=12IC.AB+12ID.AB=0

IJ  ABIJAB

Câu hỏi mới nhất

Xem thêm »
Xem thêm »