IMG-LOGO

Câu hỏi:

18/07/2024 393

Cho tam giác nhọn ABC có đường cao AD cắt đường cao BE tại H. Gọi M là trung điểm của đoạn thẳng BC. Trên tia HM lấy Q sao cho HM = MQ.

a) Chứng minh tứ giác HCQB là hình bình hành.

b) Chứng minh CQ ⊥ AC và BQ ⊥ AB.

c) Trên tia HD lấy P sao cho HD = DP. CHứng minh DM là đường trung bình của tam giác PHQ từ đó chứng minh tứ giác BPQC là hình thang cân.

d) Gọi giao điểm của đoạn thẳng HP và đoạn thẳng BQ là G. Tam giác ABC cần bổ sung điều kiện gì để tứ giác HCQG là hình thang cân.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Tứ giác HCQB có:

M là trung điểm của BC (gt)

M là trung điểm của HQ (HM = MQ)

⇒ Tứ giác HCQB là hình bình hành. (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường).

b) Vì HCQB là hình bình hành

⇒ BH//CQ hay BE//CQ

Mà BE ⊥ AC (BE là đường cao của ΔABC)

⇒ CQ ⊥ AC (đpcm)

Trong tam giác ABC có BE ⊥ AC, AD ⊥ BC và H là giao điểm của BE, AD

⇒ CH là đường cao thứ 3 của ΔABC

⇒ CH ⊥ AB. Gọi CH cắt AB tại F.

Vì HCQB là hình bình hành

⇒ FC//BQ

Mà FC ⊥ AB (cmt)

⇒ BQ ⊥ AB (đpcm)

c) Tam giác PHQ có:

M là trung điểm của HQ

D là trung điểm của HP

⇒ DM là đường trung bình tam giác PHQ

⇒ DM // PQ hay BC // PQ

⇒ BPQC là hình thang

Xét tam giác PHC có

HP ⊥ BC (vì AH ⊥ BC)

HD = DP (gt)

⇒ Tam giác PHC là tam giác cân

⇒ HC = PC

Mà HC = BQ (tính chất hình bình hành)

⇒ BQ = PC

Xét hình thang BPQC có BQ = PC (cmt)

⇒ BPQC là hình thang cân.

d) Giả sử HCQG là hình thang cân

\( \Rightarrow \widehat {HCQ} = \widehat {GHC}\)

Mà \(\widehat {HCQ} + \widehat {HCA} = 90^\circ \) và \(\widehat {GHC} + \widehat {HCB} = 90^\circ \)

\( \Rightarrow \widehat {HCA} = \widehat {HCB}\)

⇒ CF là đường phân giác của tam giác ABC

Mà CF là đường cao của tam giác ABC

⇒ Tam giác ABC cân tại C.

Vậy tam giác ABC cân tại C thì HCQG là hình thang cân.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho x2y – y2x + x2z – z2x + y2z + z2y = 2xyz.

Chứng minh rằng trong 3 số x, y, z có ít nhất hai số bằng nhau hoặc đối nhau.

Xem đáp án » 21/03/2022 328

Câu 2:

Tìm x:

a) x(x + 4) – x2= 10

b) 5x2+ 2x = 0

c) x2– 16 = x + 4

d) (4x – 1)2– (x + 7)2= 0

Xem đáp án » 21/03/2022 202

Câu 3:

Phân tích đa thức thành nhân tử:

a) 8x2+ 16xy

b) 3(x + 12) – x2– 12x

c) x2– 6x – z2+ 9

d) x2– 2x – 15

Xem đáp án » 21/03/2022 201

Câu 4:

Thu gọn biểu thức:

a) 5x3y : xy – 2x2+ 10;

b) 2x(3x + 2) + (4x + 3)(2x – 1);

c) (x + 2)2– (x + 5)(x – 5);

d) (4x + 5)2– (8x + 10)(1 – 3x) + (1 – 3x)2.

Xem đáp án » 21/03/2022 199

Câu hỏi mới nhất

Xem thêm »
Xem thêm »