Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau
A.
B.
C.
D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Xét sự biến thiên của hàm số y = sinx - cosx. Trong các kết luận sau, kết luận nào đúng?
I. Định nghĩa
1. Hàm số sin và hàm số côsin
a) Hàm số sin
- Quy tắc đặt tương ứng mỗi số thực x với số thực sinx
được gọi là hàm số sin, kí hiệu là y = sinx.
Tập xác định của hàm số sin là .
b) Hàm số côsin
- Quy tắc đặt tương ứng mỗi số thực x với số thực cosx:
được gọi là hàm số côsin, kí hiệu là y = cosx.
Tập xác định của hàm số côsin là .
2. Hàm số tang và hàm số côtang
a) Hàm số tang
Hàm số tang là hàm số được xác định bởi công thức:
Kí hiệu là y = tanx.
Vì cosx ≠ 0 khi và chỉ khi nên tập xác định của hàm số y = tanx là .
b) Hàm số côtang
Hàm số côtang là hàm số được xác định bởi công thức:
Kí hiệu là y = cot x.
Vì sinx ≠ 0 khi và chỉ khi nên tập xác định của hàm số y = cotx là .
- Nhận xét:
Hàm số y = sinx là hàm số lẻ, hàm số y = cosx là hàm số chẵn. Từ đó, suy ra các hàm số y = tanx và y = cotx là những hàm số lẻ.
II. Tính tuần hoàn của hàm số lượng giác
- Số T = 2π là số dương nhỏ nhất thỏa mãn đẳng thức: sin(x + T) = sinx ; .
- Hàm số y = sinx thỏa mãn đẳng thức trên được gọi là hàm số tuần hoàn với chu kì 2π.
- Tương tự; hàm số y = cosx là hàm số tuần hoàn với chu kì 2π.
- Các hàm số y = tanx và y = cotx cũng là những hàm số tuần hoàn, với chu kì π.
III. Sự biến thiên và đồ thị của hàm số lượng giác.
1. Hàm số y = sinx.
Từ định nghĩa ta thấy hàm số y = sinx :
+ Xác định với mọi x và – 1 ≤ sinx ≤ 1.
+ Là hàm số lẻ.
+ Là hàm số tuần hoàn với chu kì 2π.
Sau đây, ta sẽ khảo sát sự biến thiên của hàm số y = sinx.
a) Sự biến thiên và đồ thị hàm số y = sinx trên đoạn [0; π].
Hàm số y = sinx đồng biến trên và nghịch biến trên .
Bảng biến thiên:
Đồ thị của hàm số y = sinx trên đoạn [0; π] đi qua các điểm (0; 0); (x1; sinx1); (x2; sinx2); (x3; sinx3); (x4; sinx4); (π; 0).
- Chú ý:
Vì y = sinx là hàm số lẻ nên lấy đối xứng đồ thị hàm số trên đoạn [0; π] qua gốc tọa độ O, ta được đồ thị hàm số trên đoạn [– π; 0].
Đồ thị hàm số y = sinx trên đoạn [– π; π] được biểu diễn như hình vẽ dưới đây:
b) Đồ thị hàm số y = sinx trên .
Hàm số y = sinx là hàm số tuần hoàn với chu kì 2π nên với mọi x ta có:
Do đó, muốn có đồ thị hàm số y = sinx trên toàn bộ tập xác định , ta tịnh tiến liên tiếp đồ thị hàm số trên đoạn [– π; π] theo các vecto và , nghĩa là tịnh tiến song song với trục hoành từng đoạn có độ dài 2π.
Dưới đây là đồ thị hàm số y = sinx trên :
c) Tập giá trị của hàm số y = sinx
Tập giá trị của hàm số này là [– 1; 1].
2. Hàm số y = cosx.
Từ định nghĩa ta thấy hàm số y = cosx:
+ Xác định với mọi x và – 1 ≤ cosx ≤ 1.
+ Là hàm số chẵn.
+ Là hàm số tuần hoàn với chu kì 2π.
Với mọi x ta có: .
Từ đó, bằng cách tịnh tiến đồ thị hàm số y = sinx theo vecto (sang trái một đoạn có độ dài bằng , song song với trục hoành), ta được đồ thị hàm số y = cos x.
+ Hàm số y = cos x đồng biến trên đoạn [– π; 0] và nghịch biến trên đoạn [0; π].
+ Bảng biến thiên:
+ Tập giá trị của hàm số y = cosx là [– 1; 1].
+ Đồ thị của các hàm số y = cosx; y = sinx được gọi chung là các đường hình sin.
3. Hàm số y = tanx.
Từ định nghĩa hàm số y = tan x:
+ Có tập xác định: .
+ Là hàm số lẻ.
+ Là hàm số tuần hoàn với chu kì π.
a) Sự biến thiên và đồ thị hàm số y = tanx trên nửa khoảng
+ Hàm số y = tanx đồng biến trên nửa khoảng .
+ Bảng biến thiên:
+ Bảng giá trị:
Đồ thị hàm số y = tanx trên nửa khoảng đi qua các điểm tìm được.
b) Đồ thị hàm số y = tanx trên D.
Vì y = tanx là hàm số lẻ nên đồ thị hàm số có tâm đối xứng là gốc tọa độ O. Lấy đối xứng qua tâm O đồ thị hàm số y = tanx trên nửa khoảng , ta được đồ thị hàm số trên nửa khoảng .
Từ đó, ta được đồ thị hàm số y = tanx trên khoảng .
- Vì hàm số y = tanx tuần hoàn với chu kì π nên tịnh tiến đồ thị hàm số trên khoảng song song với trục hoành từng đoạn có độ dài π, ta được đồ thị hàm số y = tanx trên D.
+ Tập giá trị của hàm số y = tanx là .
4. Hàm số y = cot x
Hàm số y = cotx:
+ Có tập xác định là .
+ Là hàm số lẻ.
+ Là hàm số tuần hoàn với chu kì π.
a) Sự biến thiên của hàm số y = cotx trên khoảng (0; π).
Hàm số y = cotx nghịch biến trên khoàn (0; π).
Bảng biến thiên:
Hình biểu diễn của hàm số y = cotx trên khoảng (0; π).
b) Đồ thị hàm số y = cotx trên D.
Đồ thị hàm số y = cotx trên D được biểu diễn như hình sau:
Tập giá trị của hàm số y = cotx là .