Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến P(n) đúng với mọi số tự nhiên (p là một số tự nhiên), ta tiến hành hai bước:
Bước 1, kiểm tra mệnh đề P(n) đúng với n = p
Bước 2, giả thiết mệnh đề P(n) đúng với số tự nhiên bất kỳ và phải chứng minh rằng nó cũng đúng với n = k + 1
Trong hai bước trên:
A. Chỉ có bước 1 đúng.
B. Chỉ có bước 2 đúng.
C. Cả hai bước đều đúng.
D. Cả hai bước đều sai.
Đáp án C
Đối với bài toán chứng minh P(n) đúng với mọi với p là số tự nhiên cho trước thì:
- Bước 1: Chứng minh P(n) đúng với n = p.
- Bước 2: Với là một số nguyên dương tùy ý, giả sử P(n) đúng với n = k, chứng minh P(n) cũng đúng khi n = k + 1.
Từ lý thuyết trên ta thấy cả hai bước trên đều đúng.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Một học sinh chứng minh mệnh đề chia hết cho 7, như sau:
Giả sử (*) đúng với n = k tức là + 1 chia hết cho 7
Ta có: + 1 = 8 - 7, kết hợp với giả thiết + 1 chia hết cho 7 nên suy ra được + 1 chia hết cho 7.
Vậy đẳng thức (*) đúng với mọi
Khẳng định nào sau đây là đúng?
Đối với bài toán chứng minh P(n) đúng với mọi với p là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:
Dùng quy nạp chứng minh mệnh đề chứa biến P(n) đúng với mọi số tự nhiên (p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề P(n) đúng với n = k. Khẳng định nào sau đây là đúng?
Với , ta xét các mệnh đề:
P: “ + 5 chia hết cho 2”;
Q: “ + 5 chia hết cho 3” và
R: “ + 5 chia hết cho 6”.
Số mệnh đề đúng trong các mệnh đề trên là:
Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với n = k+1 thì ta cần chứng minh mệnh đề đúng với:
Trong phương pháp quy nạp toán học, nếu ta giả sử mệnh đề đúng với n = k thì ta cần chứng minh mệnh đề đúng đến:
Giả sử Q là tập con thật sự của tập hợp các số nguyên dương sao cho
a)
b)
Chọn mệnh đề đúng trong các mệnh đề sau.
I. Phương pháp quy nạp toán học
Để chứng minh những mệnh đề liên quan đến số tự nhiên là đúng với mọi n mà không thể thử trực tiếp được thì có thể làm như sau:
- Bước 1. Kiểm tra mệnh đề đúng với n = 1.
- Bước 2. Giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k ≥ 1 (gọi là giả thiết quy nạp), chứng minh rằng nó cũng đúng với n = k + 1.
Đó là phương pháp quy nạp toán học, hay còn gọi tắt là phương pháp quy nạp.
II. Ví dụ áp dụng
- Ví dụ 1. Chứng minh với mọi số tự nhiên n ≥ 1 ta có:
(*)
Lời giải:
Bước 1: Với n = 1 ta có:
Vế trái = 1 và vế phải = 1
Vậy hệ thức đúng với n = 1.
Bước 2: Giả sử hệ thức đúng với một số tự nhiên bất kì n = k ≥ 1 tức là:
(1)
Ta cần chứng minh hệ thức đúng với n = k + 1, tức là:
(2)
Thật vậy:
Vế trái = 1 + 2 + 3+ … + k + k + 1
(Do đẳng thức (1))
Vậy hệ thức đã cho đúng với mọi số tự nhiên n ≥ 1.
- Ví dụ 2. Chứng minh rằng với , ta có bất đẳng thức
Lời giải:
- Với n = 1, bất đẳng thức cho trở thành: (đúng).
Vậy bất đẳng thức cho đúng với n = 1.
- Giả sử bất đẳng thức cho đúng với mọi số tự nhiên n = k ≥ 1, tức là :
(1)
-Ta chứng minh bất đẳng thức cho đúng với n = k + 1, tức là :
(2)
Thật vậy, ta có :
(theo (1))
Ta chứng minh:
(do hai vế đều dương)
Hay (2k + 1).(2k + 3) < (2k + 2)2
4k^2 + 6k + 2k + 3 < 4k^2 + 8k + 4
3 < 4 (luôn đúng)
Vậy bất đẳng thức đã cho đúng với mọi số tự nhiên n ≥ 1.
- Chú ý:
Nếu phải chứng minh mệnh đề là đúng với mọi số tự nhiên n ≥ p (p là một số tự nhiên) thì:
+ Ở bước 1, ta phải kiểm tra mệnh đề đúng với n = p;
+ Ở bước 2, ta giả thiết mệnh đề đúng với số tự nhiên bất kì n = k ≥ p và phải chứng minh rằng nó cũng đúng với n = k + 1.