Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

20/07/2024 2,601

lim((3-4n)/5n) có giá trị bằng:

A. 3/5

B. -3/5

C. 4/5

D. -4/5

Đáp án chính xác
 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

- Cách 1: Chia tử và mẫu của phân tử cho n (n là luỹ thừa bậc cao nhất của n trong tử và mẫu của phân thức), ta được :

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Đáp án là D

- Cách 2: Sử dụng nhận xét:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

khi tính lim un ta thường chia tử và mẫu của phân thức cho nk (nklà luỹ thừa bậc cao nhất của n trong tử và mẫu của phân thức), từ đó được kết quả:

Nếu m < p thì lim un =0.

Nếu m =p thì lim un=am/bp

Nếu m > p thì lim un= +∞ nếu am.bp > 0; lim un= -∞ nếu am.bp < 0

Vì tử và mẫu của phân thức đã cho đều có bậc 1 nên kết quả

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

do đó chọn đáp án là D

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

lim(-3n3+2n2-5) bằng:

Xem đáp án » 27/03/2022 7,653

Câu 2:

Dãy nào sau đây không có giới hạn?

Xem đáp án » 27/03/2022 6,509

Câu 3:

Nếu limun=L,un+9>0 n thì lim(un+9) bằng số nào sau đây?

Xem đáp án » 27/03/2022 4,227

Câu 4:

limn+sin2nn+5 bằng:

Xem đáp án » 27/03/2022 4,085

Câu 5:

Dãy số nào sau đây có giới hạn khác 0?

Xem đáp án » 27/03/2022 2,974

Câu 6:

Dãy số nào sau đây có giới hạn bằng 1/5?

Xem đáp án » 27/03/2022 2,722

Câu 7:

lim4-cos2nn bằng: 

Xem đáp án » 27/03/2022 2,096

Câu 8:

limn3+n36n+2 bằng: 

Xem đáp án » 27/03/2022 1,912

Câu 9:

Dãy số nào sau đây có giới hạn bằng 0?

Xem đáp án » 27/03/2022 1,883

Câu 10:

lim104n104+2n bằng: 

Xem đáp án » 27/03/2022 1,246

Câu 11:

Dãy số nào sau đây có giới hạn là +∞?

Xem đáp án » 27/03/2022 1,011

Câu 12:

lim2n+3n3n có giá trị bằng

Xem đáp án » 27/03/2022 877

Câu 13:

Tổng của cấp số nhân vô hạn : 12, -14, ...., -1n+12n,.... là

Xem đáp án » 27/03/2022 706

Câu 14:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

 

Xem đáp án » 27/03/2022 653

Câu 15:

limnn2+1n23 bằng:

Xem đáp án » 27/03/2022 636

LÝ THUYẾT

I. GIỚI HẠN HỮU HẠN CỦA DÃY SỐ

1. Định nghĩa

Định nghĩa 1

Ta nói dãy số (un) có giới hạn là 0 khi n dần tới dương vô cực, nếu |un| có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi.

Kí hiệu: limn+un=0  hay un → 0 khi n → +∞.

Ví dụ 1. Cho dãy số (un) với un=1nn2. Tìm giới hạn dãy số

Giải

Xét un=1n2=1n2

Với n > 10 n2 > 102 = 100

un=1n2=1n2<1100

limnun=0.

Định nghĩa 2

Ta nói dãy số (vn) có giới hạn là a (hay vn dần tới a) khi n → +∞ nếu limn+vna=0

Kí hiệu:  limn+vn=a hay vn → a khi n → +∞.

Ví dụ 2. Cho dãy số vn=n13+2n. Chứng minh rằng limnvn=12.

Giải

Ta có limnvn+12=limnn13+2n+12=limn=123+2n=0

Do đó: limnvn=12.

2. Một vài giới hạn đặc biệt

a) limn+1n=0,limn+1nk=0 với k nguyên dương;

b)  limn+qn nếu |q| < 1;

c) Nếu un = c (c là hằng số) thì  limn+un=limn+c=c.

Chú ý: Từ nay về sau thay cho  limn+un=a ta viết tắt là lim un = a.

II. ĐỊNH LÝ VỀ GIỚI HẠN HỮU HẠN

Định lí 1

a) Nếu lim un = a và lim vn = b thì

lim (un + vn) = a + b

lim (un – vn) = a – b

lim (un.vn) = a.b

limunvn=ab (nếu b0)

Nếu  un0với mọi n và limun­ = a thì:

limun=a  và a0.

Ví dụ 3. Tính limn22n+1

Giải

limn22n+1=limn3+n22n+1=lim1+1n2n31n2+1n3=lim1+1n2n3:lim1n2+1n3

=lim1+lim1nlim2n3:lim1n2+lim1n3

=+

Ví dụ 4. Tìm lim2+9n21+4n

Giải

lim2+9n21+4n=limn22n2+9n1n+4=limn2n2+9n1n+4=lim2n2+91n+4=34.

III. TỔNG CỦA CẤP SỐ NHÂN LÙI VÔ HẠN

Cấp số nhân vô hạn (un) có công bội q, với |q| < 1 được gọi là cấp số nhân lùi vô hạn.

Tổng của cấp số nhân lùi vô hạn:

S=u1+u2+u3+...+un+...=u11qq<1

Ví dụ 5. Tính tổng của cấp số nhân lùi vô hạn 1;12;14;18;...;12n1;...

Giải

Ta có dãy số1;12;14;18;...;12n1;...  là một số cấp số nhân lùi vô hạn với công bội q=12.

Khi đó ta có: Sn=lim1+12+14+18+...+12n1+...=1112=23.

IV. GIỚI HẠN VÔ CỰC

1. Định nghĩa

- Ta nói dãy số (un) có giới hạn là +∞ khi n → +∞, nếu un có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Kí hiệu: lim un = +∞ hay un → +∞ khi n → +∞.

- Dãy số (un) có giới hạn là –∞ khi n → +∞, nếu lim (–un) = +∞.

Kí hiệu: lim un = –∞ hay un → –∞ khi n → +∞.

Nhận xét: un = +∞ ⇔ lim(–un) = –∞

2. Một vài giới hạn đặc biệt

Ta thừa nhận các kết quả sau

a) lim nk = +∞ với k nguyên dương;

b) lim qn = +∞ nếu q > 1.

3. Định lí 2

a) Nếu lim un = a và lim vn = ±∞ thì limunvn=0

b) Nếu lim un = a > 0, lim vn = 0 và vn > 0, ∀ n > 0 thì limunvn=+

c) Nếu lim un = +∞ và lim vn = a > 0 thì limun.vn=+.

Ví dụ 6. Tính lim2n+1n.

Giải

lim2n+1n=lim2n+lim1n

lim2n=+ và lim1n=0

lim2n+1n=+

Câu hỏi mới nhất

Xem thêm »
Xem thêm »