Trong các mệnh đề sau, mệnh đề nào sai?
A. Hai đường thẳng không có điểm chung thì chéo nhau.
B. Hai đường thẳng chéo nhau thì không có điểm chung.
C. Hai đường thẳng phân biệt không cắt nhau và không song song thì chéo nhau.
D. Hai đường thẳng phân biệt không chéo nhau thì hoặc cắt nhau hoặc song song.
Hai đường thẳng không có điểm chung thì chúng song song (khi chúng đồng phẳng) hoặc chéo nhau (khi chúng không đồng phẳng).
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai đường thẳng có một điểm chung duy nhất. Có thể kết luận gì về vị trí tương đối của hai đường thẳng đó?
Cho mặt phẳng (ABC) và hai điểm D,E nằm ngoài mặt phẳng (ABC). Một đường thẳng a nằm trong mặt phẳng (ABC). Khẳng định nào sau đây đúng?
Cho đường thẳng a và mặt phẳng (P) không chứa a. Hai đường thẳng b và c cùng nằm trong mặt phẳng (P) và cùng cắt đường thẳng a. Khả năng nào sau đây không thể xảy ra?
I. Vị trí tương đối của hai đường thẳng trong không gian.
Cho hai đường thẳng a và b trong không gian. Khi đó có thể xảy ra một trong các trường hợp sau:
- Trường hợp 1. Có một mặt phẳng chứa a và b.
Khi đó, ta nói a và b đồng phẳng. Theo kết quả của hình học phẳng có 3 khả năng xảy ra:
i) a và b có điểm chung duy nhất M. Ta nói a và b cắt nhau tại M và kí hiệu . Ta có thể viết .
ii) a và b không có điểm chung. Ta nói a và b song song với nhau và kí hiệu là a // b.
iii) a trùng b, kí hiệu là .
- Trường hợp 2. Không có mặt phẳng nào chứa a và b.
Khi đó ta nói a và b chéo nhau hay a chéo với b.
- Ví dụ 1. Cho tứ diện ABCD. Hãy chỉ ra các cặp đường thẳng chéo nhau.
Lời giải:
Đường thẳng AB và CD chéo nhau.
Đường thẳng AC và BD chéo nhau.
Đường thẳng AD và BC chéo nhau.
II. Tính chất
- Định lí. Trong không gian, qua một điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho.
- Định lí (về giao tuyến của ba mặt phẳng).
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song với nhau.
- Hệ quả. Nếu hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
Ví dụ 2. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Tìm giao tuyến của các mặt phẳng:
a) (SAD) và (SBC).
b) (MCD) và (SAB), với M là một điểm bất kì thuộc cạnh SA.
Lời giải:
a) Ta có: .
, với Sx // AB // CD.
b) Ta có: .
, với My // AB // CD.
- Định lí. Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.
Ta có: a // c; b // c nên a // b hay a // b // c (ba đường thẳng song song).
Ví dụ 3. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm của các cạnh SA, SB. Chứng minh rằng IJ // AB, từ đó suy ra IJ // CD.
Lời giải:
Xét tam giác SAB có I, J lần lượt là trung điểm của các cạnh SA, SB nên IJ là đường trung bình của tam giác SAB.
Từ đó suy ra IJ // AB.
Lại có AB // CD (vì ABCD là hình bình hành) nên từ đó ta có IJ // CD (vì cùng song song với đường thẳng AB).