Cho tứ diện ABCD, G là trọng tâm của tam giác ABD, M là điểm trên cạnh BC sao cho MB = 2MC. Khẳng định nào sau đây là đúng?
A. MG // (ACD)
B. MG // (ABC)
C. MG // AB
D. MG cắt AC
Gọi N là trung điểm của AD
G là trọng tâm của tam giác ABD nên:
⇒ MG // CN.
Do CN thuộc (ACD) nên MG // (ACD).
Đáp án A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tứ diện ABCD. Gọi I; J lần lượt là trung điểm của BC và BD. Giao tuyến của hai mặt phẳng (AIJ) và (ACD) là đường nào sau đây?
Cho tứ diện ABCD, M, N lần lượt là trọng tâm của tam giác ABC, ABD. Những khẳng định nào sau đây là đúng?
(1) MN //(BCD)
(2) MN //(ACD)
(3) MN // (ABD)
Cho tứ diện đều ABCD cạnh a. I, J lần lượt là trung điểm của AC và BC. Gọi K là giao điểm trên cạnh BD với KB = 2KD. Thiết diện của tứ diện với mặt phẳng (IJK) là hình gì?
Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ:
Cho tứ diện ABCD. Giả sử M thuộc đoạn BC. Một mặt (∝) qua M song song với AB và CD. Thiết diện của (∝) và hình tứ diện ABCD là hình gì?
Cho tứ diện ABCD, điểm M thuộc AC. Mặt phẳng (∝) đi qua M, song song với AB và AD. Thiết diện (∝) với tứ diện ABCD là hình gì?
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Gọi M là trung điểm của SA. Thiết diện của mặt phẳng (MCD) với hình chóp S.ABCD là hình gì?
Cho hình chóp S.ABCD đáy ABCD là hình bình hành. Gọi I, J lần lượt là trọng tâm của các tam giác SAB và SAD. E, F lần lượt là trung điểm của AB và AD. Trong các mệnh đề sau, mệnh đề nào đúng?
Cho tứ diện ABCD. M, N lần lượt là trọng tâm của các tam giác ABC, ABD. Thiết diện của tứ diện với mặt phẳng (∝) chứa MN và song song với AB là hình gì?
Cho hình chóp S.ABCD, M, N, P, Q lần lượt là trọng tâm các tam giác SAB, SBC, SCD, SDA. Khẳng định nào sau đây là đúng?
Cho hình chóp S.ABCD đấy ABCD là hình bình hành tâm O. gọi M, N lần lượt là trung điểm của SA và SB. Giao tuyến của hai mặt phẳng (MNC) và (ABD) là đường nào trong các đường thẳng sau đây?
Cho tứ diện ABCD. Hai điểm M, N lần lượt là trung điểm của AC, AD. Mặt phẳng (∝) chứa MN và song song với AB. Thiết diện của (∝) với tứ diện ABCD là:
Cho hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng, có tâm lần lượt là O và O’. Chọn khẳng định đúng trong các khẳng định sau:
Hình chóp S.ABCD có đáy là hình bình hành ABCD. Giả sử M thuộc đoạn thẳng SB. Mặt phẳng (ADM) cắt hình chóp S.ABCD theo thiết diện là hình:
I. Vị trí tương đối của đường thẳng và mặt phẳng.
Cho đường thẳng d và mặt phẳng (α). Tùy theo số điểm chung của d và (α), ta có ba trường hợp sau:
- d và (α) không có điểm chung. Khi đó ta nói d song song với (α) hay (α) song song với d và kí hiệu là d // (α) hay (α) // d.
- d và (α) chỉ có một điểm chung duy nhất M. Khi đó ta nói d và (α) cắt nhau tại điểm M và kí hiệu .
- d và (α) có từ hai điểm chung trở lên. Khi đó, d nằm trong (α) hay (α) chứa d và kí hiệu .
II. Tính chất
- Định lí. Nếu đường thẳng d không nằm trong mặt phẳng (α) và d song song với đường thẳng d’ nằm trong (α) thì d song song với (α).
Ta có: .
- Định lí. Cho đường thẳng a song song với mặt phẳng (α). Nếu mặt phẳng (β) chứa a và cắt (α) theo giao tuyến b thì b song song với a.
- Hệ quả. Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
- Định lí. Cho hai đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.
Ví dụ 1. Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi O, O1 lần lượt là tâm của ABCD và ABEF, gọi M là trung điểm của CD. Chứng minh:
a) OO1 // mp (BEC).
b) OO1 // mp (AFD)
Lời giải.
a) Xét tam giác ACE có O; lần lượt là trung điểm của AC; AE (tính chất hình hình hành).
Suy ra O là đường trung bình trong tam giác ACE và O // EC.
Mà EC thuộc mp (BEC) nên O // mp (BEC) (đpcm).
b) Tương tự; O là đường trung bình của tam giác BFD nên O // FD.
Mà FD nằm trong mp(AFD)
Suy ra: O // mp (AFD) (đpcm).
Ví dụ 2. Cho tứ diện ABCD. Gọi H là một điểm nằm trong tam giác ABC và (α) là mặt phẳng đi qua H song song với AB và CD. Thiết diện của tứ diện cắt bởi mp (α) là hình gì?
Lời giải:
+ Qua H kẻ đường thẳng song song AB và đường thẳng này cắt BC, AC lần lượt tại M, N.
+ Từ N kẻ NP song song với CD
Từ P kẻ PQ song song với AB .
+ Ta có: MN // PQ // AB
Suy ra 4 điểm M; N; P và Q đồng phẳng .
Suy ra thiết diện của tứ diện cắt bởi mp (α) là tứ giác MNPQ.
+ Ta chứng minh MNPQ là hình bình hành.
Trước tiên, ta chứng minh PN // QM.
Ta có:
Suy ra: QM // PN // CD
Lại có: PQ // MN
Do đó, tứ giác MNPQ là hình bình hành.