Cho tứ giác ABCD có AC và BD căt nhau tại O. Một điểm S không thuộc mp (ABCD). Trên đoạn SC lấy 1 điểm M không trùng với S và C. Giao điểm của đường thẳng SD với mặt phẳng (ABM) là
A. giao điểm của SD và BA
B. Giao điểm của SD và AM
C. Giao điểm của SD và BK. ( K là giao điểm của SO và AM)
D. giao điểm của SD và MK ( với K là giao điểm của SO và AM)
+ Chọn mặt phẳng phụ (SBD) chứa SD.
+ Tìm giao tuyến của hai mặt phẳng (SBD) và (AMB).
Ta có B là điểm chung thứ nhất của 2 mp đó.
Trong mặt phẳng (SAC), gọi K là giao điểm của AM và SO.
Ta có:
+ K thuộc SO mà suy ra
+ K thuộc AM mà suy ra
Suy ra K là điểm chung thứ hai của (SBD) và (ABM).
Do đó giao tuyến của 2 mp này là: BK..
+ Trong mặt phẳng (SBD), gọi SD và BK cắt nhau tại N. Ta có:
▪ N thuộc BK mà suy ra .
▪ N thuộc SD
Vậy giao điểm của SD và (ABM) là N.
Chọn C.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I; J lần lượt là trung điểm của SA; SB. Hỏi khẳng định nào sau đây là sai.
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Mặt phẳng α qua MN cắt AD; BC lần lượt tại P và Q. Biết MP cắt NQ tại I. Ba điểm nào sau đây thẳng hàng?
Cho tứ diện ABCD có E và F lần lượt là trung điểm của AB và CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mp (ACD) là
Cho tứ diện ABCD. Gọi E; F; G là điểm lần lượt thuộc các cạnh AB; AC; BD sao cho EF cắt BC tại I; EG cắt AD tại H . Ba đường nào sau đây đồng quy?
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm của SC; I là giao điểm của Am và ( SBD). Mệnh đề nào sau đây là đúng?
Cho tứ diện S. ABC. Lấy điểm E; F lần lượt trên đoạn SA; SB và điểm G trọng tâm giác ABC. Gọi H là giao điểm của EF và AB; J là giao điểm của HG và BC. Tìm giao tuyến của (EFG) và (SGC).
Cho tứ diện S. ABC. Lấy M thuộc SB; N thuộc AC và I thuộc SC sao cho MI không song song với BC; NI không song song với SA. Gọi K là giao điểm của MI và BC. Tìm giao tuyến của (MNI) với (SAB).
Cho tứ diện đều ABCD có độ dài các cạnh bằng 2a. Gọi M và N lần lượt là trung điểm của AC và BC; P là trọng tâm tam giác BCD. Mặt phẳng (MNP) cắt tứ diện theo 1 thiết diện có diện tích là
Cho tứ diện đều ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC. Mặt phẳng (GCD) cắt tứ diện theo 1 thiết diện có diện tích là
Cho hình chóp S. ABCD có đáy là hình thang AB// CD. Gọi I là giao điểm của AC và BD. Trên cạnh SB lấy điểm M . Tìm giao tuyến của mặt phẳng (ADM) và (SAC)?
Cho 4 điểm A; B; C; S không đồng phẳng. Gọi I và H lần lượt là trung điểm của SA và AB. Trên SC lấy điểm K sao cho IK không song song với AC ( K không trùng với các đầu mút). Gọi E là giao điểm của BC và (IHK). Tìm mệnh đề đúng
Cho tứ diện ABCD và điểm M thuộc AB và N thuộc CD; điểm G nằm trong tam giác BCD. Tìm giao tuyến của (GMN) và (ACD)
Cho hình chóp S.ABCD. Hai điểm G; H lần lượt là trọng tâm tam giác SAB và SCD. Gọi O là giao điểm của AC và BD; I là giao điểm của SO và GH. Tìm giao tuyến của: (BGH) và (SAC)
Cho hình chóp S. ABCD có đáy là hình thang (AB// CD). Tìm khẳng định sai?