IMG-LOGO

Câu hỏi:

21/07/2024 1,243

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N lần lượt là trung điểm của AB, AD. Tính khoảng cách từ điểm D đến mặt phẳng (SCN) theo a.

A. a33

B. a34

C. a24

Đáp án chính xác

D. 4a33

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA = a152 và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC).

Xem đáp án » 27/03/2022 1,955

Câu 2:

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B, AD = a, AB = 2a, BC = 3a, SA = 2a, H là trung điểm cạnh AB, SH là đường cao của hình chóp S.ABCD. Tính khoảng cách từ điểm A đến mặt phẳng (SCD).

Xem đáp án » 27/03/2022 1,457

Câu 3:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, BAD^=600, SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng (SCD) bằng:

Xem đáp án » 27/03/2022 499

Câu 4:

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tính theo a khoảng cách từ điểm A đến mặt phẳng (A'BC).

Xem đáp án » 27/03/2022 476

Câu 5:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC); góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 600. Gọi M là trung điểm của cạnh AB. Tính khoảng cách d từ B đến mặt phẳng (SMC).

Xem đáp án » 27/03/2022 473

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)

Xem đáp án » 27/03/2022 432

Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SB2=SC3=a. Cạnh SA vuông góc (ABCD), khoảng cách từ điểm A đến mặt phẳng (SCD) bằng:

Xem đáp án » 27/03/2022 409

Câu 8:

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 600. Gọi O là giao điểm của AC và BD. Tính khoảng cách từ O đến mặt phẳng (SAB).

Xem đáp án » 27/03/2022 409

Câu 9:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc 600. Tính khoảng cách d từ điểm D đến mặt phẳng (SBC).

Xem đáp án » 27/03/2022 396

Câu 10:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a, AC = a3. Tam giác SBC đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách d từ B đến mặt phẳng (SAC).

Xem đáp án » 27/03/2022 378

Câu 11:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Cạnh bên SA = a2 và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm B đến mặt phẳng (SCD).

Xem đáp án » 27/03/2022 377

Câu 12:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên SA = a3 và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC).

Xem đáp án » 27/03/2022 334

Câu 13:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).

Xem đáp án » 27/03/2022 299

Câu 14:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a, BC = a3. Hình chiếu vuông góc của S trên mặt đáy là trung điểm H của cạnh AC. Biết SB = a2. Tính theo a khoảng cách từ điểm H đến mặt phẳng (SAB)?

Xem đáp án » 27/03/2022 296

LÝ THUYẾT

I. Khoảng cách từ một điểm đến một đường thẳng, một mặt phẳng.

1. Khoảng cách từ một điểm đến một đường thẳng

Cho điểm O và đường thẳng a. Trong mặt phẳng (O; a), gọi H là hình chiếu vuông góc của O lên a. Khi đó, khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến đường thẳng a.

Kí hiệu: d(O; a).

Bài 5 : Khoảng cách (ảnh 1)

Ví dụ 1. Cho hình lập phương ABCD. A'B'C'D' cạnh a. Tính khoảng cách từ B tới đường thẳng DB'.

Lời giải:

Bài 5 : Khoảng cách (ảnh 1)

Từ giả thuyết ta suy ra:  BD=  BC2+​ CD2=a2

Gọi H là hình chiếu của B lên DB' ta có: BH = d (B, DB').

Xét tam giác BB'D vuông tại B ta có:

1BH2=1B'B2+1BD2=1a2+1a22=32a2

BH=a63

2. Khoảng cách từ một điểm đến một mặt phẳng

Cho điểm O và mặt phẳng (α). Gọi H là hình chiếu vuông góc của O lên mặt phẳng (α). Khi đó khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến mặt phẳng (α) và được kí hiệu là d(O; (α)).

Bài 5 : Khoảng cách (ảnh 1)

Ví dụ 2. Cho hình chóp S. ABC có SA  (ABC), ∆ABC là tam giác đều cạnh  a và tam giác SAB cân. Tính khoảng cách h từ điểm A đến mặt phẳng (SBC).

Lời giải:

Bài 5 : Khoảng cách (ảnh 1)

Gọi D là trung điểm BC. Do tam giác ABC đều nên AD  BC (1).

Trong tam giác SAD, kẻ AH  SD (2).

Do SAABCSABCADBCSAAD=ABCSADSBCSAD(3).

Từ (2) và (3), ta suy ra AH vuông góc với (SBC) nên d(A ; (SBC))= AH.

Theo giả thiết, ta có SA = AB = a, AD=a32 (đường cao trong tam giác đều cạnh a).

Tam giác SAD vuông nên

1AH2=1SA2+1AD21AH2=1a2+43a21AH2=73a2AH=a37

II. Khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song.

1. Khoảng cách giữa đường thẳng và măt phẳng song song.

- Định nghĩa: Cho đường thẳng a song song với mặt phẳng (α). Khoảng cách giữa đường thẳng a và mặt phẳng (α) là khoảng cách từ một điểm bất kì thuộc a đến mặt phẳng (α).

Kí hiệu là d(a; (α)) .

Bài 5 : Khoảng cách (ảnh 1)

2. Khoảng cách giữa hai mặt phẳng song song.

- Định nghĩa: Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì của mặt phẳng này đến mặt phẳng kia.

- Kí hiệu: d((α); (β)).

Như vậy: d((α); (β)) = d(M; (β)) = d(M’; (α)).

Bài 5 : Khoảng cách (ảnh 1)

III. Đường vuông góc chung và khoảng cách hai đường thẳng chéo nhau.

1. Định nghĩa.

a) Đường thẳng ∆ cắt hai đường thẳng chéo nhau a, b và cùng vuông góc  với mỗi đường thẳng ấy được gọi là đường vuông góc chung của a và b.

b) Nếu đường vuông góc chung ∆ cắt hai đường thẳng chéo nhau a, b lần lượt tại M; N thì độ dài đoạn thẳng MN gọi là khoảng cách giữa hai đường thẳng chéo nhau a và b.

Bài 5 : Khoảng cách (ảnh 1)

2. Cách tìm đường vuông góc chung của hai đường thẳng chéo nhau.

- Cho hai đường thẳng chéo nhau a và b. Gọi (β) là mặt phẳng chứa b và song song với a; a’ là hình chiếu vuông góc của a trên mặt phẳng (β).

Vì a// (β) nên a// a’. Do đó; a’ cắt b tại 1 điểm là N

Gọi (α) là mặt phẳng chứa a và a’; ∆ là đường thẳng đi qua N và vuông góc với (β). Khi đó, (α) vuông góc (β).

Như vậy.∆ nằm trong (α) nên cắt đường thẳng a tại M và cắt đường thẳng b tại N.Đồng thời, ∆ vuông góc với cả a và b.

Do đó, ∆ là đường vuông góc chung của a và b.

Bài 5 : Khoảng cách (ảnh 1)

Ví dụ 3. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng chéo nhau SA và BC.

Lời giải :

Bài 5 : Khoảng cách (ảnh 1)

Do SABABCD và BC    ABBCSAB.

Vì tam giác SAB đều nên gọi M là trung điểm của SA thì BMSA  nên BM là đoạn vuông góc chung của BC và SA.

Vậy dSA;BC=BM=a32.

3. Nhận xét

a) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó đến mặt phẳng song song với nó và chứa đường thẳng còn lại.

b) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó.

Bài 5 : Khoảng cách (ảnh 1)

Ví dụ 4. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy, SA= a. Khoảng cách giữa hai đường thẳng SB và CD là

Lời giải :

Bài 5 : Khoảng cách (ảnh 1)

Vì  SAABCD  SAAD.

Ta có: SAADABADADSABdD,SAB=DA.

Vì CDSABCD  // ABABSAB

Suy ra:  CD // (SAB) nên :

d(CD, SB) = d(CD, (SAB)) = d(D, (SAB)) = DA = a,

Câu hỏi mới nhất

Xem thêm »
Xem thêm »