Viết tập hợp P các chữ cái khác nhau trong cụm từ: “ HOC SINH”
A. P = {H; O; C; S; I; N; H}.
B. P = {H; O; C; S; I; N}.
C. P = {H; C; S; I; N}.
D. P = {H; O; C; H; I; N}.
Các chữ cái khác nhau trong cụm từ “ HOC SINH” là H; O; C; S; I; N
Nên P = {H; O; C; S; I; N}.
Đáp án cần chọn là: B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho B là tập hợp các số tự nhiên nhỏ hơn 10. Trong các khẳng định sau, có bao nhiêu khẳng định sai?
1. 2∈B
2. 5∉B
3. B = {0;1;2;3;4;5;6;7;8;9;10}
4. B={9;8;7;6;5;4;3;2;1;0}
5. B={0;1;1;2;3;4;5;6;7;8;9}
Số phần tử của tập hợp các số tự nhiên lẻ lớn hơn 1010 nhỏ hơn 5050 là
Tập hợp P gồm các số tự nhiên lớn hơn 50 và không lớn hơn 57. Kết luận nào sau đây là sai?
Viết tập hợp A = {x|22< x ≤ 27} dưới dạng liệt kê các phần tử ta được:
Số phần tử của tập hợp P gồm các chữ cái trong cụm từ “ WORLD CUP” là
Viết tập hợp A = {16; 17; 18; 19} dưới dạng chỉ ra tính chất đặc trưng.
1. Tập hợp, phần tử
Một tập hợp (gọi tắt là tập) bao gồm những đối tượng nhất định, những đối tượng đó được gọi là những phần tử của tập hợp mà ta nhắc đến.
Mối quan hệ giữa tập hợp và phần tử: Tập hợp chứa phần tử (nếu có) và phần tử nằm trong tập hợp.
Tập hợp là khái niệm cơ bản thường dùng trong toán học và cuộc sống. Ta hiểu tập hợp thông qua các ví dụ.
Ví dụ:
a) Tập hợp các bạn nữ trong lớp 6A bao gồm tất cả các bạn nữ của lớp 6A.
Đối tượng của tập hợp này là các bạn nữ của lớp 6A. Mỗi một bạn là một phần tử.
b) Tập hợp các số nhỏ hơn gồm tất cả các số nhỏ hơn 6, đó là 0; 1; 2; 3; 4; 5.
Mỗi một số trong 6 số này là một phần tử của tập hợp, chẳng hạn số 0 là một phần tử, số 1 cũng là một phần tử.
2. Các kí hiệu tập hợp
- Người ta thường đặt tên cho tập hợp bằng các chữ cái in hoa: A, B, C, D, ... và sử dụng các chữ cái thường a, b, c, ... để kí hiệu cho phần tử.
- Các phần tử của tập hợp được viết trong dấu ngoặc nhọn { }, cách nhau bởi dấu chấm phẩy dấu “;”. Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý.
- Phần tử x thuộc tập hợp A được kí hiệu là x A, đọc là “x thuộc A”. Phần tử y không thuộc tập hợp A được kí hiệu là y A, đọc là “y không thuộc A”.
Ví dụ: Tập hợp M gồm tất cả các số nhỏ hơn 5
Kí hiệu: M = {0; 1; 2; 3; 4} = {2; 1; 0; 3; 4}.
Mỗi số 0; 1; 2; 3; 4 đều là một phần tử của tập hợp M.
Số 6 không là phần tử của M (8 không thuộc M).
Ta viết: 0 ∈ M; 1 ∈ M; 2 ∈ M; 3 ∈ M; 4 ∈ M và 8 ∉ M.
3. Các cách cho một tập hợp
Nhận xét. Để cho một tập hợp, thường có hai cách:
• Liệt kê các phần tử của tập hợp.
• Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp.
Ngoài 2 cách cho tập hợp như trên, người ta còn minh họa bằng hình vẽ (Sơ đồ Venn).
Ví dụ: Tập hợp A gồm tất cả các số tự nhiên nhỏ hơn 6.
- Liệt kê: A = {0; 1; 2; 3; 4; 5}.
- Chỉ ra tính chất đặc trưng: B = {x | x < 6}.
- Sơ đồ Venn:
4. Tập rỗng
Tập rỗng là tập hợp không có phần tử nào, kí hiệu .
Ví dụ: Giả sử các học sinh lớp 6A không có bạn nào trên 55kg. Nên tập hợp các bạn trên 55kg của lớp 6A là tập rỗng.
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số chẵn
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 2
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 1