Khẳng định nào sau đây đúng?
A. Ư(16) = {1,2,4,8,16}
B. Ư(16) = {1;2;4;8}
C. Ư(16) = {1;2;4;8;16}
D. Ư(16) = {2;4;8}
Ta có: 16:1 = 16; 16:2 = 8; 16:4 = 4; 16:8 = 2; 16:16 = 1
Các ước của 16 là 1; 2; 4; 8; 16.
=>Ư(16) = {1; 2; 4; 8; 16}
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Đội Sao đỏ của trường có 24 bạn. Cô phụ trách muốn chia đội thành các nhóm đều nhau để kiểm tra vệ sinh lớp học, mỗi nhóm có ít nhất 2 bạn và có ít nhất 2 nhóm. Có bao nhiêu cách chia thành các nhóm như thế?
Tìm tập hợp các bội của 6 trong các số: 6; 15; 24; 30; 406; 15;24; 30; 40.
Tìm \[\overline {abcd} \] trong đó a, b, c, d là 4 số tự nhiên liên tiếp tăng dần và \[\overline {abcd} \in B\left( 5 \right)\]
1. Ước và bội
Nếu có số tự nhiên a chia hết cho số tự nhiên b thì ta nói a là bội của b, còn b là ước của a.
Ví dụ: Ta có 12 ⋮ 6.
Khi đó, 12 là bội của 6, còn 6 là ước của 12.
Tập hợp các ước của a được kí hiệu là Ư(a). Tập hợp các bội của a được kí hiệu là B(a).
Ví dụ: Ư(8) = {1; 2; 4; 8}; B(5) = {0; 5; 10; 15; 20; …}.
Chú ý:
- Số 0 là bội của tất cả các số tự nhiên khác 0. Số 0 không là ước của bất kì số tự nhiên nào.
- Số 1 chỉ có một ước là 1. Số 1 là ước của mọi số tự nhiên.
- Mọi số tự nhiên a lớn hơn 1 luôn có ít nhất hai ước là 1 và chính nó.
2. Cách tìm ước
Cách tìm Ư(a):
Ta có thể tìm các ước của a (a > 1), ta có thể lần lượt chia a cho các số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.
Ví dụ:
Ta có 16 : 1 = 16; 16 : 2 = 8; 16 : 4 = 4; 16 : 8 = 2; 16 : 16 = 1.
Do đó các ước của 16 là: 1; 2; 4; 8; 16.
Vậy tập hợp các ước của 16 là: Ư(16) = {1; 2; 4; 8; 16}.
3. Cách tìm bội
Cách tìm B(a):
Muốn tìm bội của số tự nhiên a khác 0, ta có thể nhân a lần lượt với 0, 1, 2, 3, ...
Chú ý:
Bội của a có dạng tổng quát là a . k với k . Ta có thể viết:
.
Ví dụ:
Ta có: 6 . 0 =0; 6 . 1 = 6; 6 . 2 = 12; 6 . 3 = 18; …
Do đó các bội của 6 là: 0; 6; 12; 18; …
Vậy B(6) = {0; 6; 12; 18; ...}