IMG-LOGO

Câu hỏi:

22/07/2024 235

Phát biểu nào sau đây đúng?

A. Ước của một số nguyên âm là các số nguyên âm

B. Ước của một số nguyên dương là một số nguyên dương.

C. Nếu a là bội của bb thì −a cũng là bội của bb.

Đáp án chính xác

D. Nếu b là ước của a thì −b là bội của aa.

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Ước của một số nguyên âm bao gồm cả số nguyên âm và nguyên dương =>A, B sai

Nếu b là ước của a thì −b cũng là ước của a =>D sai

Nếu a là bội của bb thì −a cũng là bội của b =>C đúng

Đáp án cần chọn là: C

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong các phát biểu sau đây, phát biểu nào đúng?

Xem đáp án » 07/04/2022 291

Câu 2:

 Nhiệt độ đầu tuần tại một trạm nghiên cứu ở Nam Cực là C−250C. Sau 7 ngày nhiệt độ tại đây là −390C. Hỏi trung bình mỗi ngày nhiệt độ thay đổi bao nhiêu độ C?

Xem đáp án » 07/04/2022 220

Câu 3:

Các bội của 6  là:

Xem đáp án » 07/04/2022 211

Câu 4:

Tìm x  biết: 25.x = −225

Xem đáp án » 07/04/2022 208

Câu 5:

Số các ước nguyên của số nguyên tố p là:

Xem đáp án » 07/04/2022 203

Câu 6:

Tìm số nguyên x thỏa mãn (−9)2.x = 150 + 12.13x

Xem đáp án » 07/04/2022 202

Câu 7:

Các số nguyên x thỏa mãn: −8 chia hết cho x là:

Xem đáp án » 07/04/2022 199

Câu 8:

Cho a, b∈Z và b ≠ 0. Nếu có số nguyên q sao cho a = bq  thì

Xem đáp án » 07/04/2022 193

Câu 9:

Tập hợp tất cả các bội của 7 có giá trị tuyệt đối nhỏ hơn 50 là:

Xem đáp án » 07/04/2022 187

Câu 10:

Tìm x, biết: 12⋮x  và x < −2

Xem đáp án » 07/04/2022 185

LÝ THUYẾT

1. Nhân hai số nguyên khác dấu

Quy tắc nhân hai số nguyên khác dấu

− Tích của hai số nguyên khác dấu luôn luôn là một số nguyên âm.

− Khi nhân hai số nguyên khác dấu, ta nhân số dương với số đối của số âm rồi thêm dấu trừ (−) trước kết quả nhận được.

Chú ý: Cho hai số nguyên dương a và b, ta có:

(+ a) . (−b) = − a . b

(− a) . (+ b) = − a . b

Ví dụ: Tính:

a) (−9) . 4;

b) 6 . (−11);

c) (−14) . 50.

Hướng dẫn giải

a) (−9) . 4 = −(9.  4) = − 36;

b) 6 . (−11) = − (6 . 11) = −66;

c) (−14) . 50 = − (14 . 50) = − 700.

2. Nhân hai số nguyên cùng dấu

Quy tắc nhân hai số nguyên cùng dấu

− Khi nhân hai số nguyên cùng dương, ta nhân chúng như nhân hai số tự nhiên.

− Khi nhân hai số nguyên cùng âm, ta nhân hai số đối của chúng.

Chú ý:

• Cho hai số nguyên dương a và b, ta có: (−a) . (−b) = (+a) . (+b) = a . b.

• Tích của hai số nguyên cùng dấu luôn luôn là một số nguyên dương.

Ví dụ: Tính:

a) 15 . 6;

b) (−55) . (−10);

c) (+22) . (+11).

Hướng dẫn giải

a) 15 . 6 = 90;

b) (−55) . (−10) = 55 . 10 = 550;

c) (+22) . (+11) = 22 . 11 = 242.

3. Tính chất của phép nhân các số nguyên

a) Tính chất giao hoán

Phép nhân hai số nguyên có tính chất giao hoán, nghĩa là:

a . b = b . a

Chú ý:

• a . 1 = 1 . a = a;

• a . 0 = 0 . a = 0.

• Cho hai số nguyên x, y:

Nếu x . y = 0 thì x = 0 hoặc y = 0.

Ví dụ: Nếu (a + 5) . (a – 14) = 0 thì

a + 5 = 0 hoặc a – 14 = 0.

Suy ra a = –5 hoặc a = 14.

b) Tính chất kết hợp

Phép nhân các số nguyên có tính chất kết hợp:

(a . b) . c = a . (b . c)

Chú ý: Áp dụng tính chất kết hợp của phép nhân, ta có thể viết tích của nhiều số nguyên:

a . b . c = a . (b . c) = (a . b) . c.

Ví dụ:

[(−4) . (−5)] . 8 = (−4) . [(−5) . 8]

= (−4) . (−5) . 8 = 4 . 5 . 8

= 20 . 8 = 160.

c) Tính chất phân phối của phép nhân đối với phép cộng

Phép nhân số nguyên có tính chất phân phối đối với phép cộng:

a(b + c) = ab + ac

Phép nhân số nguyên có tính chất phân phối đối với phép trừ:

a(b − c) = ab – ac

Ví dụ: Thực hiện phép tính:

(−5) . 29 + (−5) . (−99) + (−5) . (−30).

Hướng dẫn giải

(−5) . 29 + (−5) . (−99) + (−5) . (−30)

= (−5) . [29 + (−99) + (−30)]

= (−5) . [(−70) + (−30)]

= (−5) . (−100)

= 5 . 100

= 500.

4. Quan hệ chia hết và phép chia trong tập hợp số nguyên

Cho a,b và b ≠ 0. Nếu có số nguyên q sao cho a = bq thì

• Ta nói a chia hết cho b, kí hiệu là a ⋮ b.

• Trong phép chia hết, dấu của thương hai số nguyên cũng giống như dấu của tích.

Ta gọi q là thương của phép chia a cho b, kí hiệu là a : b = q.

Ví dụ: Ta có: (−15) = 3 . (−5) nên ta nói:

• (−15) chia hết cho (−5);

• (−15) : (−5) = 3;

• 3 là thương của phép chia (−15) cho (−5).

5. Bội và ước của một số nguyên

Cho a,b . Nếu a ⋮ b thì ta nói a là bội của b là b là ước của a.

Ví dụ: Ta có (−15) ⋮ (−5) nên ta nói (−15) là bội của (−5) và (−5) là ước của (−15).

Nếu c vừa là ước của a, vừa là ước của b thì c cũng được gọi là ước chung của a và b.

Ví dụ: Vì 4 vừa là ước của 8 vừa là ước của 12 nên 4 là ước chung của 8 và 12.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »