Thực hiện các phép tính sau: 0,15 . 4,4 ta được kết quả là:
A.6,6
B.0,66
C.6,60
D.0,066
\[0,15.4,4 = 0,66\]
Đáp án cần chọn là: B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Khối lượng vitamin C trung bình trong một quả ớt chuông là 0,135 g, còn trong một quả cam là 0,045 g. Khối lượng vitamin C trong quả ớt chuông gấp bao nhiêu lần trong quả cam?
Bạn Nam cao 1,57 m, bạn Linh cao 1,53 m, bạn Loan cao 1,49 m.hiểu
Chiều cao của bạn cao nhất hơn bạn thấp nhất là bao nhiêu mét?
Tính diện tích S của một hình tròn có bán kính R = 10cm theo công thức
S = πR2với π = 3,142
Điền số thích hợp vào ô trống
Thực hiện phép tính sau: 12,3 + 5,67 ta được kết quả là
Giá trị của \[N = - \frac{1}{7}\left( {9\frac{1}{2} - 8,75} \right):\frac{2}{7} + 0,625:1\frac{2}{3}\]là:
Thực hiện phép tính: (−4,5) + 3,6 + 4,5 + (−3,6) ta được kết quả là:
Điền số thích hợp vào ô trống
Cho biết một quả chuối nặng 100 g có chứa:
- Chất béo: 0,3 g
- Kali: 0,42 g.
Trong quả chuối đó, khối lượng kali nhiều hơn khối lượng chất béo là g
Tính chu vi của một hình tròn có bán kính R = 1,25 m theo công thức
C = 2πRvới π= 3,142.
Điền số thích hợp vào ô trống
Kết quả của phép trừ 0,008 − 3,9999 là:
Điền số thích hợp vào ô trống
Thực hiện phép tính −5,5 + 90,67 ta được kết quả là:
Điền số thích hợp vào ô trống
Kết quả của phép tính (−12,3) + (−5,67) là
Điền số thích hợp vào chỗ trống
Thực hiện phép tính: 3,176 − (2,104 + 1,18) ta được kết quả là
1. Cộng, trừ hai số thập phân
Để thực hiện các phép tính cộng và trừ các số thập phân, ta áp dụng các quy tắc về dấu như khi thực hiện các phép tính cộng và trừ các số nguyên.
- Muốn cộng hai số thập phân âm, ta cộng hai số đối của chúng rồi thêm dấu trừ đằng trước kết quả.
- Muốn cộng hai số thập phân trái dấu, ta làm như sau:
• Nếu số dương lớn hơn hay bằng số đối của số âm thì ta lấy số dương trừ đi số đối của số âm.
• Nếu số dương nhỏ hơn số đối của số âm thì ta lấy số đối của số âm trừ đi số dương rồi thêm dấu trừ (−) trước kết quả.
- Muốn trừ số thập phân a cho số thập phân b, ta cộng a với số đối của b.
Nhận xét:
- Tổng của hai số thập phân cùng dấu luôn cùng dấu với hai số thập phân đó.
- Khi cộng hai số thập phân trái dấu:
• Nếu số dương lớn hơn số đối của số âm thì ta có tổng dương.
• Nếu số dương nhỏ hơn số đối của số âm thì ta có tổng âm.
Ví dụ 1. Thực hiện phép tính:
a) (−16,25) + (−25,11);
b) 45,5 − 63,25;
c) 25,75 – (−17,48).
Lời giải:
a) (−16,25) + (−25,11) = −(16,25 + 25,11) = −41,36;
b) 45,5 − 63,25 = 45,5 + (− 63,25) = − (63,25 − 45,5) = −17,75;
c) 25,75 − (−17,48) = 25,75 +17,48 = 43,23.
2. Nhân, chia hai số thập phân dương
Muốn nhân hai số thập phân dương có nhiều chữ số thập phân, ta làm như sau:
- Bỏ dấu phẩy rồi nhân như nhân hai số tự nhiên.
- Đếm xem trong phần thập phân ở cả hai thừa số có tất cả bao nhiêu chữ số rồi dùng dấu phẩy tách ở tích ra bấy nhiêu chữ số từ phải sang trái.
Ví dụ 2. Để nhân hai số thập phân 21,44 . 14,5
Ta nhân hai số nguyên 2 144 . 145 = 310 880.
Do phần thập phân của hai thừa số có tất cả 3 chữ số nên ta dung dấu phẩy tách ở tích ra 3 chữ số từ phải sang trái và có kết quả là:
21,44 . 14,5 = 310,880.
Muốn chia hai số thập phân dương có nhiều chữ số thập phân, ta làm như sau:
- Đếm xem có bao nhiêu chữ số ở phần thập phân của số chia thì chuyển dấu phẩy ở số bị chia sang bên phải bấy nhiêu chữ số.
Chú ý: Khi chuyển dấu phẩy ở số bị chia snag phải mà không đủ chữ số, ta thấy thiếu bao nhiêu chữ số thì thêm vào đó bấy nhiêu chữ số 0.
- Bỏ dấu phẩy ở số chia rồi thực hiện phép chia như chia số thập phân cho số tự nhiên.
Ví dụ 3. Thực hiện phép tính: 3,25 : 1,25.
Lời giải:
Phép tính 3,25 : 1,25 là phép chia hai số thập phân dương, ta làm như sau:
- Phần thập phân của số chia và số bị chia đều có 2 chữ số.
- Bỏ dấu thập phân ở số bị chia và số chia ta đươc số bị chia và số chia mới là 325 và 125.
- Ta thực hiện phép chia: 325 : 125 = 2,6.
Vậy 3,25 : 1,25 = 325 : 125 = 2,6.
3. Nhân, chia hai số thập phân có dấu bất kì
Để thực hiện các phép tính nhân và chia số thập phân, ta áp dụng các quy tắc về dấu như đối với số nguyên để đưa về bài toán nhân hoặc chia hai số thập phân dương với lưu ý sau:
- Tích và thương của hai số thập phân cùng dấu luôn là một số dương.
- Tích và thương của hai số thập phân khác dấu luôn là một số âm.
- Khi nhân hoặc chia hai số thập phân cùng âm, ta nhân hoặc chia hai số đối của chúng.
- Khi nhân hoặc chia hai số thập phân khác dấu, ta chỉ thực hiện phép nhân hoặc phép chia giữa số dương và số đối của số âm rồi thêm dấu trừ (−) trước kết quả nhận được.
Ví dụ 4. Thực hiện các phép tính sau:
a) 45,23 . (−12,5);
b) (−74,175) : (−3,45).
Lời giải:
a) Phép tính 45,23 . (−12,5) là phép nhân hai số thập phân khác dấu.
Ta lấy số thập phân dương là 45,23 nhân với số đối của số thập phân âm là 12,5 rồi thêm dấu trừ trước kết quả, ta được:
45,23 . (−12,5) = −(45,23 . 12,5) = −565,375.
Vậy 45,23 . (−12,5) = −565,375.
b) Phép tính (−74,175) : (−3,45) là phép chia hai số thập phân cùng âm, ta chia hai số đối của chúng, ta được:
(−74,175) : (−3,45) = 74,175 : 3,45 = 21,5.
Vậy (−74,175) : (−3,45) = 21,5.
4. Tính chất của các phép tính với số thập phân
Phép tính với số thập phân âm có đầy đủ các tính chất giống như các phép tính với số nguyên và phân số:
- Tính chất giao hoán và tính chất kết hợp của phép cộng.
- Tính chất giao hoán và tính chất kết hợp của phép nhân.
- Tính chất phân phối của phép nhân đối với phép cộng.
Ví dụ 5.
- Tính chất giao hoán và tính chất kết hợp của phép cộng.
31,35 + 78,12 = 78,12 + 31,35;
(28,34 + 22,45) + 224,4 = 28,34 + (22,45 + 224,4).
- Tính chất giao hoán và tính chất kết hợp của phép nhân.
(−45,6) . 4,5 = 4,5 . (−45,6);
[(−45,6) . 4,5] . (−21,15) = (−45,6) . [4,5 . (−21,15)].
- Tính chất phân phối của phép nhân đối với phép cộng.
0,25 . (1,25 + 3,4) = 0,25 . 1,25 + 0,25 . 3,4.
Quy tắc dấu ngoặc:
- Khi bỏ dấu ngoặc có dấu (+) đứng trước thì dấu các số hạng trong ngoặc vẫn giữ nguyên; khi bỏ dấu ngoặc có dấu (−) đứng trước, ta phải đổi dấu tất cả các số hạng trong dấu ngoặc.
- Khi đưa nhiều số hạng vào trong dấu ngoặc và để dấu (−) đứng trước thì ta phải đổi dấu của tất cả các số hạng đó.
Ví dụ 6. Tính bằng cách hợp lí: 43,46 + (−4,5) + (−3,46).
Lời giải:
3,46 + (−4,5 + 1,54) − (22 + 3,46)
= 3,46 − 4,5 + 1,54 − 22 − 3,46
= (3,46 − 3,46) + (3,46 + 1,54) − 4,5
= 0 + 5 − 4,5 = 0,5.
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số chẵn
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 2
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 1