A.22000 người
B.21000 người
C.21900 người
D.21200 người
Từ yêu cầu đề bài ta sẽ làm tròn số 21292 đến hàng nghìn.
Vì số 21292 có chữ số hàng trăm là 2 < 5 nên làm tròn số này đến hàng nghìn ta được \[21292 \approx 21000\]
Vậy lễ hội có khoảng 21000 người.
Đáp án cần chọn là: B
>Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
1. Làm tròn số thập phân
Quy tắc làm tròn số thập phân:
Khi làm tròn các số thập phân đến hang nào thì hang đó gọi là hàng quy tròn.
Muốn làm tròn một số thập phân đến một hang quy tròn nào đó, ta thực hiện các bước sau:
- Gạch dưới chữ số thập phân của hàng quy tròn .
- Nhìn sang chữ số ngay bên phải.
• Nếu chữ số đó lớn hơn hoặc bằng 5 thì tang chữ số gạch dưới lên một đơn vị rồi thay tất các chữ số bên phải bằng số 0 hoặc bỏ đi nếu chúng ở phần thập phân.
• Nếu chữ số đó nhỏ hơn 5 thì giữ nguyên chữ số gạch dưới và thay tất các chữ số bên phải bằng số 0 hoặc bỏ đi nếu chúng ở phần thập phân.
Ví dụ 1. Làm tròn số thập phân 5,238
a) đến hàng phần mười;
b) đến hàng phần trăm.
Lời giải:
Làm tròn số: 5,238
a) đến hàng phần mười
- Chữ số hàng phần mười của số 5,238 là 2.
- Chữ số bên phải liền nó là 3 < 5 nên chữ số hàng phần mười giữ nguyên là 2 và bỏ các chữ số từ hàng phần trăm trở đi.
Do đó, số 5,238 làm tròn đến hàng phần mười là: 5,2.
b) đến hàng phần trăm:
- Chữ số hàng phần trăm của số 5,238 là 3.
- Chữ số bên phải liền nó là 8 > 5 nên chữ số hàng phần trăm tăng lên một đơn vị là 4 và bỏ đi chữ số hàng phần nghìn.
Do đó, số 5,238 làm tròn đến hàng phần trăm là: 5,24.
2. Ước lượng kết quả
Ta có thể sử dụng quy ước làm tròn số để ước lượng kết quả các phép tính. Nhờ đó có thể dễ dàng phát hiện ra những đáp số không hợp lí.
Ví dụ 2. Ước lượng kết quả của phép tính: (−14,4) . 3,9.
Lời giải:
* Ước lượng kết quả:
Ta có: −14,4 ≈ −14; 3,9 ≈ 4.
Do đó (−14,4) . 3,9 ≈ (−14) . 4 = 56.
(chữ số thập phân thứ nhất là 3 < 5).
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số chẵn
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 2
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 1