Trong các mệnh đề sau, mệnh đề nào đúng?
A. Hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến d. Với mỗi điểm A thuộc (P) và mỗi điểm B thuộc (Q) thì ta có AB vuông góc với d.
B. Nếu hai mặt phẳng (P) và (Q) cùng vuông góc với mặt phẳng (R) thì giao tuyến của (P) và (Q) nếu có cũng sẽ vuông góc với (R).
C. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau.
D. Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia.
A sai. Trong trường hợp A∈d, B∈d, khi đó AB trùng với d.
C sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ 3).
D sai. Hai mặt phẳng vuông góc với nhau, đường thẳng thuộc mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.
Đáp án cần chọn là: B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với đáy. Gọi M là trung điểm AC. Khẳng định nào sau đây sai?
Cho hình chóp S.ABC có SA vuông góc (ABC), tam giác ABC vuông tại B, kết luận nào sau đây sai?
Cho hình chóp S.ABC có tam giác ABC vuông cân tại B, AB = BC = a, SA = , SA vuông góc (ABC). Góc giữa hai mặt phẳng (SBC) và (ABC) là
Cho hình chóp S.ABCD có hai mặt bên (SAB) và (SAC) vuông góc với mặt phẳng (ABC), tam giác ABC vuông cân ở A và có đường cao AH (HBC). Gọi O là hình chiếu vuông góc của A lên (SBC). Khẳng định nào sau đây sai ?
Cho tứ diện ABCD có AB,AC,AD đôi một vuông góc. Chỉ ra mệnh đề sai trong các mệnh đề sau:
Cho tứ diện ABCD có AC=AD và BC=BD. Gọi I là trung điểm của CD. Khẳng định nào sau đây sai?
Cho hai mặt phẳng (P) và (Q) song song với nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?
Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng a. Tính cosin của góc giữa một mặt bên và một mặt đáy.
Cho hình hộp đứng ABCD.A'B'C'D’ . Xét tất cả các hình bình hành có đỉnh là đỉnh của hình hộp đó. Hỏi có bao nhiêu hình bình hành mà mặt phẳng chứa nó vuông góc với mặt phẳng đáy (ABCD) ?
I. Góc giữa hai mặt phẳng
1. Định nghĩa:
Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.
- Nếu hai mặt phẳng song song hoặc trùng nhau thì ta nói rằng góc giữa hai mặt phẳng đó bằng 0.
2. Cách xác định góc giữa hai mặt phẳng cắt nhau.
- Giả sử 2 mặt phẳng (α) và (β) cắt nhau theo giao tuyến c. Từ một điểm I bất kì trên c ta dựng trong (α) đường thẳng a vuông góc với c và dựng trong (β) đường thẳng b vuông góc với c.
- Khi đó, góc giữa hai mặt phẳng (α) và (β) là góc giữa hai đường thẳng a và b.
Ví dụ 1. Cho hình chóp S. ABC có , gọi I là trung điểm BC. Ta xác định góc giữa hai mặt phẳng ( SBC) và ( ABC) :
Ta có:
.
3. Diện tích hình chiếu của một đa giác.
Cho đa giác H nằm trong mặt phẳng (α) có diện tích S và H’ là hình chiếu vuông góc của H lên mp(β).
Khi đó, diện tích S’ của H’ được tính theo công thức:
với là góc giữa (α) và (β).
II. Hai mặt phẳng vuông góc.
1. Định nghĩa.
Hai mặt phẳng gọi là vuông góc với nhau nếu góc giữa hai mặt phẳng đó là góc vuông.
Nếu hai mặt phẳng (α) và (β) vuông góc với nhau ta kí hiệu: .
2. Các định lí.
- Định lí 1.
Điều kiện cần và đủ để hai mặt phẳng vuông góc với nhau là mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
- Hệ quả 1.
Nếu hai mặt phẳng vuông góc với nhau thì bất cứ đường thẳng nào nằm trong mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.
- Hệ quả 2.
Cho hai mặt phẳng (α) và (β) vuông góc với nhau. Nếu từ một điểm thuộc mặt phẳng (α) ta dựng một đường thẳng vuông góc với mặt phẳng (β) thì đường thẳng này nằm trong mặt phẳng (α).
Ví dụ 2. Cho tứ diện ABCD có . Trong tam giác BDC vẽ các đường cao BE và DF cắt nhau ở O. Trong( ADC) vẽ tại K. Chứng minh
a)
b)
c)
Lời giải:
a) Ta có .
b) Ta có: .
c) Ta có .
III. Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương.
1. Định nghĩa.Hình lăng trụ đứng là hình lăng trụ có các cạnh bên vuông góc với các mặt đáy. Độ dài cạnh bên được gọi là chiều cao của hình lăng trụ đứng.
- Hình lăng trụ đứng có đáy là tam giác, tứ giác, ngũ giác… được gọi là hình lăng trụ đứng tam giác, hình lăng trụ đứng tứ giác, hình lăng trụ đứng ngũ giác…
- Hình lăng trụ đứng có đáy là một đa giác đều được gọi là hình lăng trụ đều.
Ta có các loại hình lăng trụ đều như lăng trụ tam giác đều, lăng trụ tứ giác đều..
- Hình lăng trụ đứng có đáy là hình bình hành được gọi là hình hộp đứng.
- Hình lăng trụ đứng có đáy là hình chữ nhật được gọi là hình hộp chữ nhật.
- Hình lăng trụ đứng có đáy là hình vuông và các mặt bên đều là hình vuông được gọi là hình lập phương.
2. Nhận xét
Các mặt bên của hình lăng trụ đứng luôn luôn vuông góc với mặt phẳng đáy và là những hình chữ nhật.
IV. Hình chóp đều và hình chóp cụt đều.
1. Hình chóp đều.
Cho hình chóp đỉnh S có đáy là đa giác A1A2…An và H là hình chiếu vuông góc của S trên mặt phẳng đáy (A1A2…An). Khi đó, đoạn thẳng SH gọi là đường cao của hình chóp và H là chân đường cao của hình chóp.
- Định nghĩa. Một hình chóp được gọi là hình chóp đều nếu nó có đáy là một đa giác đều và có chân đường cao trùng với tâm của đa giác đáy.
- Nhận xét:
a) Hình chóp đều có các mặt bên là những tam giác cân bằng nhau. Các mặt bên tạo với mặt đáy các góc bằng nhau.
b) Các cạnh bên của hình chóp đều tạo với mặt đáy các góc bằng nhau.
2. Hình chóp cụt đều.
- Định nghĩa: Phần của hình chóp đều nằm giữa đáy và một thiết diện song song với đáy cắt các cạnh bên của hình chóp đều được gọi là hình chóp cụt đều.
- Ví dụ 3: Hình ABCD.A’B’C’D’ ở hình dưới là một hình chóp cụt đều. Hai đáy của hình chóp cụt đều là 2 đa giác đều và đồng dạng với nhau.
- Nhận xét. Các mặt bên của hình chóp cụt đều là những hình thang cân và các cạnh bên của hình chóp cụt đều có độ dài bằng nhau.