Cho đồ thị (C) của hàm số . Khẳng định nào sau đây là đúng?
A. Đồ thị (C) có 1 tiệm cận đứng và 2 tiệm cận ngang
B. Đồ thị (C) có 1 tiệm cận đứng và 1 tiệm cận ngang
C. Đồ thị (C) có 12 tiệm cận đứng và không có tiệm cận ngang
D. Đồ thị (C) có 2 tiệm cận đứng và 1 tiệm cận ngang
Chọn D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình chóp S.ABCD có đáy ABCD là hình thoi và . Mặt bên SAB là tam giác cân đỉnh S và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm của cạnh SD. Số đo của góc giữa hai đường thẳng AM và CD bằng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SA. Mặt phẳng (BCM) cắt cạnh SD tại điểm N. Đặt . Tìm t.
Gọi S là tập hợp số nguyên dương k thỏa mãn điều kiện: . Số phần tử của tập S là
Mặt phẳng (P) chứa trục Oy và cách A(1;3;5) một đoạn dài nhất có phương trình là
Số điện thoại ở một thành phố có 6 chữ số, trong đó các chữ số được lựa chọn trong tập 10 chữ số E={0;1;2;…;8;9}. Có bao nhiêu số điện thoại gồm 3 cặp giống nhau có hai chữ số dạng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, , SA vuông góc với mặt phẳng (ABCD), góc giữa đường thẳng SD và mặt phẳng (ABCD) bằng . Gọi M là trung điểm của cạnh AD. Khoảng cách giữa hai đường thẳng CM và SB bằng
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh , , cạnh bên SA vuông góc với đáy và SA = 3a. Số đo của góc giữa hai mặt phẳng (SBC) và (SCD) bằng
Cho hình chóp S.ABC có SA = SB = SC = 1. Gọi G là trọng tâm của tứ diện. Xét mặt phẳng (α) thay đổi đi qua điểm G và cắt các cạnh SA, SB, SC lần lượt tại D, E, F. Giá trị lớn nhất của biểu thức bằng
Gọi n là số mặt phẳng đối xứng của hình chóp tứ giác đều. Tìm n.
Cho khối trụ có bán kính hình tròn đáy bằng r, chiều cao h. Hỏi nếu tăng chiều cao lên gấp 2 lần và tăng bán kính đáy lên gấp 3 lần so với khối trụ ban đầu thì thể tích của khối trụ mới thiết lập sẽ tăng bao nhiêu lần so với khối trụ ban đầu?
Tìm hai số phức, biết tổng của chúng bằng tích của chúng và bằng 2
Một bình đựng nước dạng hình nón (không có đáy), đựng đầy nước. Biết rằng chiều cao của bình gấp 3 lần bán kính đáy của nó, Người ta thả vào đó một khối trụ và đo được thể tích nước tràn ra ngoài là . Biết rằng một mặt của khối trụ nằm trên mặt đáy của hình nón, các điểm trên đường tròn đáy còn lại đều thuộc các đường sinh của hình nón (như hình vẽ) và khối trụ có chiều cao bằng đường kính đáy của hình nón. Tính diện tích xung quanh của bình nước
Cho mặt phẳng và . Viết phương trình tham số của đường thẳng d là giao của (α) và (β).