Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=2a và vuông góc với đáy. Gọi M, N lần lượt là trung điểm của CD và SA. Tính sin góc tạo bởi đường thẳng MN và mặt phẳng (SBD).
A. 2/3.
B. 4/9.
C. 1/3.
D. 1/9.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Biết SA⊥(ABC) và SA=a. Tính theo a thể tích của khối chóp S.ABC.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=a và vuông góc với đáy. Gọi G là trọng tâm tam giác BCD. Tính khoảng cách từ G đến mặt phẳng (SBC).
Cho tam giác ABC có BC=a,AC=b,AB=c và bán kính đường tròn ngoại tiếp tam giác ABC bằng R. Tìm khẳng đính sai trong các khẳng định sau?
Cho hàm số với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số nghịch biến trên từng khoảng xác định của nó. Tìm số phần tử của tập S
Có bao nhiêu giá trị nguyên của tham số m∈[-10;10] để hàm số y=|2| có 5 điểm cực trị
Cho hai số phức z,w thỏa mãn |z+2w|=4,|z-2w|=2,|3z+w|=3. Tìm giá trị của biểu thức P=
Cho hàm số có đồ thị (C) và điểm M(3;1). Tìm tham số m để đường thẳng d:y=-x +2 cắt đồ thị (C ) tại ba điểm phân biệt A(0;2),B,C sao cho tam giác MBC có diện tích bằng 2.
Cho hàm số (a,b,c,d là các hằng số,a≠0) có đồ thị như sau:
Khẳng định nào sau đây là khẳng định đúng?
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x–y+z -1= 0 và (Q):2x+y+1= 0. Viết phương trình mặt phẳng đi qua A(1;-1;-2) vuông góc với hai mặt phẳng (P) và (Q).
Biết (trong đó là phân số tối giản, a,b∈ ) là giá trị thực của tham số m để hàm số có hai điểm cực trị x1;x2 thỏa mãn . Tính P= a+2b.
Cho các số thực x,y thay đổi thỏa mãn. Gọi - tối giản là giá trị nhỏ nhất của biểu thức P=. Tính T=a+b.