Một người muốn gửi tiết kiệm ở ngân hàng theo hình thức gửi hàng tháng với số tiền bằng nhau và hi vọng sau 4 năm có được 850 triệu đồng để mua ô tô. Biết rằng lãi suất ngân hàng mỗi tháng trong thời điểm hiện tại là 0,45% và không thay đổi trong 4 năm, Hỏi người đó mỗi tháng phải gửi vào ngân hàng tối thiểu bao nhiêu tiền để đủ số tiền mua ô tô
A. 15,833 triệu đồng
B. 16,833 triệu đồng
C. 17,833 triệu đồng
D. 18,833 triệu đồng
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho lăng trụ ABCD.A’B’C’D’ có ABCD là hình thoi. Hình chiếu của A’ lên (ABCD) là trọng tâm của tam giác ABD. Tính thể tích khối lăng trụ ABCD.A’B’C’D’ biết
Gọi z1, z2 là nghiệm phức của phương trình (trong đó Tìm số phức
Cho số thực z1 và số phức z2 thỏa mãn và là số thực. Gọi a, b lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của Tính T = a + b.
Cho tam giác ABC có hai đỉnh B, C cố định BC = 2a và đỉnh A thay đổi. Qua B dựng đường thẳng d vuông góc với BC, d cắt đường trung tuyến AI của tam giác ABC tại K. Gọi H là trực tâm của tam giác ABC, biết rằng IH song song với KC. Tìm quỹ tích điểm A là
Cho hình chóp S.ABCD có đáy là hình vuông. Trên AB lấy một điểm M. Gọi là mặt phẳng qua M và song song với mặt phẳng (SAD) cắt SB, SC và CD lần lượt tại N, P, Q. Thiết diện của với hình chóp là
Một màn ảnh hình chữ nhật cao 1,4m được đặt ở độ cao 1,8m so với tầm mắt (tính từ đấu mép dưới của màn hình). Để nìn rõ nhất phải xác định vị trí đứng cách màn ảnh sao cho góc nhìn lớn nhất
Vị trí đó cách màn ảnh
Cho hai điểm A(-1;2), B(3;1) và đường thẳng Điểm C(x;y) thuộc để tam giác ACB cân tại C. Giá trị x + y là
Cho khối lăng trụ ABC.A’B’C’ có thể tích bằng a3 .Gọi M là trung điểm của CC’. Tính khoảng cách từ điểm A’ đến mặt phẳng (ABM) biết rằng ABM là tam giác đều cạnh a
Cho tam giác ABC đều cạnh a. Gọi (P) là mặt phẳng chứa BC và vuông góc với mặt phẳng (ABC). Trong (P) xét đường tròn (C) đường kính BC. Diện tích mặt cầu nội tiếp hình nón có đáy là (C) và đỉnh A bằng
Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng (P): 2x+2y-z+16=0 và mặt cầu (s): (x-2)2 + (y+1)2 + (z-3)2=9. Điểm M di động trên trên (S) và điểm N di động trên (P) sao cho độ dài đoạn thẳng MN ngắn nhất. Tọa độ điểm M là
Gọi S là tập hợp các số tự nhiên gồm ba chữ số được lập thành từ tập X={0,1,2,3,4,5,6,7}. Rút ngẫu nhiên một số thuộc S. Tính xác suất để rút được một số mà trong đó, chữ số đứng sau luôn lớn hơn hoặc bằng chữ số đứng trước