Cho hình chữ nhật có , (như hình vẽ).
Gọi lần lượt là trung điểm của , , và . Tính thể tích của vật thể tròn xoay khi quay hình tứ giác quanh trục .
A.
B.
C.
D.
Chọn hệ trục tọa độ sao cho ,
Bài toán trở thành: Tính thể tích của vật thể tròn xoay khi cho hình phẳng giới hạn bởi: quay quanh trục
Cách khác:
Gọi là trung điểm .
Gọi là thể tích khối nón cụt tạo bởi quay quanh AB,
có chiều cao là , bán kính đáy là và
Gọi là thể tích khối nón tạo bởi quay quanh ,
có chiều cao là và bán kính đáy là
Ta có thể tích cần tính
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên sau?
Cho mặt cầu và mặt phẳng . Gọi là đường tròn giao tuyến của và . Viết phương trình mặt cầu cầu chứa và điểm
Cho số phức z thỏa mãn . Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?
Trong không gian cho ba điểm , , và . Biết mặt phẳng qua , và tâm mặt cầu nội tiếp tứ diện có một vectơ pháp tuyến là . Tổng là
Cho hàm số với là tham số thực. Tìm tất cả các giá trị của để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác vuông.