Cho hình thoi ABCD như hình vẽ.
Chọn phương án đúng.
A. \[\widehat {AOB}\] và \[\widehat {DOC}\] là hai góc đối đỉnh;
B. \[\widehat {AOB}\] và \[\widehat {BOC}\] là hai góc so le trong;
C. \[\widehat {BAD}\] và \[\widehat {ADC}\] là hai góc đồng vị;
D. \[\widehat {ABC}\] và \[\widehat {ADC}\] là hai góc kề bù.
Đáp án đúng là: A
\[\widehat {AOB}\] và \[\widehat {DOC}\] là hai góc đối đỉnh là phát biểu đúng, chọn phương án A;
\[\widehat {AOB}\] và \[\widehat {BOC}\] là hai góc so le trong là phát biểu sai, vì \[\widehat {AOB}\] và \[\widehat {BOC}\] là hai góc kề bù;
\[\widehat {BAD}\] và \[\widehat {ADC}\] là hai góc đồng vị là phát biểu sai, vì \[\widehat {BAD}\] và \[\widehat {ADC}\] là hai góc trong cùng phía.
\[\widehat {ABC}\] và \[\widehat {ADC}\] là hai góc kề bù là phát biểu sai vì hai góc này không chung đỉnh.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho \[\widehat {mOn}\] và \[\widehat {nOp}\] là hai góc kề bù. Biết \[\widehat {mOn} = 110^\circ \] và Ot là tia phân giác của góc nOp. Số đo góc mOt là:
Cho \(\widehat {xOy} = 120^\circ \), tia Ot là tia phân giác của góc xOy. Tính số đo góc xOt
Cho hình chữ nhật ABCD như hình vẽ. Biết IJ // AB và \[\widehat {JOC} = 30^\circ \].
Số đo góc BAC là:
Cho hình bình hành ABCD như hình vẽ. Biết EF // DC, \[\widehat {DAB} = 65^\circ \] và \[\widehat {AFE} = 35^\circ \]. Số đo góc KAD là:
Định lí: “Nếu hai đường thẳng song song cùng cắt đường thẳng thứ ba thì hai góc đồng vị bằng nhau”. Giả thiết của định lí là:
Viết giả thiết cho định lí sau:
“Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng khác thì hai đường thẳng đó song song với nhau”.
Cho hình vẽ. Tính góc FEC, biết EF // BC và \[\widehat {ECB} = 40^\circ \]:
Cho các phát biểu sau:
(1) Hai góc dối đỉnh thì bằng nhau;
(2) Hai bằng nhau thì đối đỉnh;
(3) Hai đường thẳng song song thì cắt nhau;
(4) Nếu N là trung điểm của HK thì NH = NK;
(5) Nếu NH = NK thì N là trung điểm của HK.
Có bao nhiêu phát biểu đúng?
Cho ba đường thẳng phân biệt a, b và c, biết a // b và \[a \bot c\]. Kết luận nào đúng: