Cho hình vẽ dưới đây, biết a // b. Tính x, y.
A.
x = 80° và y = 80°;
B. x = 60° và y = 80°;
C. x = 80° và y = 60°;
D. x = 60° và y = 60°.
Đáp án đúng là: B
Vì a // b nên \[\widehat {BAC} + \widehat {ACD} = 180^\circ \] (hai góc trong cùng phía bù nhau)
Suy ra 100o + x = 180o
Do đó x = 180o ‒ 100° = 80°
Vì a // b nên \[\widehat {ABD} + \widehat {CDB} = 180^\circ \] (hai góc trong cùng phía bù nhau)
Suy ra \[\widehat {CDB} = 180^\circ - \widehat {ABD}\]
\[\widehat {CDB} = 180^\circ - 120^\circ = 60^\circ \]
Mà góc y và \(\widehat {CDB}\) là hai góc đổi đỉnh nên \[y = \widehat {CDB} = 60^\circ \]
Vậy x = 80° và y = 60°.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho \[\widehat {mOn}\] và \[\widehat {nOp}\] là hai góc kề bù. Biết \[\widehat {mOn} = 110^\circ \] và Ot là tia phân giác của góc nOp. Số đo góc mOt là:
Cho \(\widehat {xOy} = 120^\circ \), tia Ot là tia phân giác của góc xOy. Tính số đo góc xOt
Cho hình chữ nhật ABCD như hình vẽ. Biết IJ // AB và \[\widehat {JOC} = 30^\circ \].
Số đo góc BAC là:
Định lí: “Nếu hai đường thẳng song song cùng cắt đường thẳng thứ ba thì hai góc đồng vị bằng nhau”. Giả thiết của định lí là:
Cho hình bình hành ABCD như hình vẽ. Biết EF // DC, \[\widehat {DAB} = 65^\circ \] và \[\widehat {AFE} = 35^\circ \]. Số đo góc KAD là:
Viết giả thiết cho định lí sau:
“Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng khác thì hai đường thẳng đó song song với nhau”.
Cho hình vẽ. Tính góc FEC, biết EF // BC và \[\widehat {ECB} = 40^\circ \]:
Cho các phát biểu sau:
(1) Hai góc dối đỉnh thì bằng nhau;
(2) Hai bằng nhau thì đối đỉnh;
(3) Hai đường thẳng song song thì cắt nhau;
(4) Nếu N là trung điểm của HK thì NH = NK;
(5) Nếu NH = NK thì N là trung điểm của HK.
Có bao nhiêu phát biểu đúng?
Cho ba đường thẳng phân biệt a, b và c, biết a // b và \[a \bot c\]. Kết luận nào đúng: