Cho đường thẳng . Giao điểm của với trục tung là:
A. A
B. B
C. C
D. D
Đáp án D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai đường thẳng = 2x -2 và = 3 - 4x . Tung độ giao điểm của ; có tọa độ là:
Cho đường thẳng d:Gọi A, B lần lượt là giao điểm của d với trục hoành và trục tung. Tính diện tích tam giác OAB.
Cho đường thẳng . Gọi A, B lần lượt là giao điểm của d với trục hoành và trục tung. Tính diện tích tam giác OAB.
Gọi là đồ thị hàm số là đồ thị hàm số . Xác định giá trị của m để M(2; −1) là giao điểm của .
Cho hàm số y = 3x + 12. Hỏi đồ thị hàm số cắt trục hoành tại điểm nào?
Gọi d1 là đồ thị hàm số và là đồ thị hàm số . Xác định giá trị của m để M(1; 3) là giao điểm của d1 và d2.
Cho đồ thị hàm số y = -x + 4. Đồ thị hàm số cắt trục Ox, Oy lần lượt tại A; B. Tính khoảng cách AB?
Cho hai đường thẳng : y = 2x + 4 và : y = -x + 7. Tìm tọa độ giao điểm của hai đồ thị?
Cho đường thẳng và đường thẳng . Gọi A, B lần lượt là giao điểm của với và với trục hoành. Tổng hoành độ giao điểm của A và B là:
Biết rằng với x = 2 thì hàm số y = 2x + b có giá trị là 10. Tìm b?
Với giá trị nào của m thì ba đường thẳng giao nhau tại một điểm?
1. Đồ thị hàm số y = ax + b (a ≠ 0)
Đồ thị hàm số y = ax + b (a ≠ 0) là một đường thẳng:
- Cắt trục tung tại điểm có tung độ bằng b.
- Song song với đường thẳng y = ax nếu b ≠ 0; trùng với đường thẳng y = ax nếu b = 0
Chú ý. Đồ thị hàm số y = ax + b (a ≠ 0) còn được gọi là đường thẳng y = ax + b và b được gọi là tung độ gốc của đường thẳng.
Ví dụ 1. Gọi A là giao điểm của hai đường thẳng y = x − 1 và y = 3x + 1, tìm tọa độ của điểm A?
Lời giải:
Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình:
x − 1 = 3x + 1
3x − x = − 1 − 1
2x = − 2
x = − 1.
Với x = − 1 thì y = − 1 − 1 = − 2. Khi đó, A(− 1; − 2).
Vậy tọa độ giao điểm A(− 1; − 2).
2. Cách vẽ đồ thị hàm số y = ax + b (a ≠ 0)
• Khi b = 0 thì y = ax. Đồ thị hàm số y = ax là đường thẳng đi qua gốc tọa độ O(0; 0) và điểm A(1; a).
• Xét trường hợp y = ax + b với a ≠ 0 và b ≠ 0.
Bước 1: Cho x = 0 thì y = b, ta được điểm P(0; b) thuộc trục tung Oy.
Cho y = 0 thì , ta được điểm thuộc trục hoành Ox.
Bước 2: Vẽ đường thẳng đi qua hai điểm P và Q ta được đồ thị hàm số y = ax + b (a ≠ 0).
Chú ý: Vì đồ thị y = ax + b (a ≠ 0) là một đường thẳng nên muốn vẽ nó chỉ cần xác định hai điểm phân biệt thuộc đồ thị.
Ví dụ 2. Vẽ đồ thị hàm số y = 2x – 1.
Bước 1: Cho x = 0 thì y = −1, ta được điểm A(0; −1) ∈ Oy.
Cho y = 1 thì 2x – 1 = 1 x = 1, ta được điểm B(1; 1)
Bước 2: Vẽ đường thẳng đi qua hai điểm A và B, ta được đồ thị hàm số y = 2x – 1.
Ta có đồ thị hàm số: