Chủ nhật, 26/01/2025
IMG-LOGO

Câu hỏi:

19/07/2024 166

Hãy so sánh \[A = 657.1982\]\[B = 660.1952\]


A. A > B;


Đáp án chính xác


B. A < B;



C. A ≤ B;



D. A = B.


 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

\[A = 657.1982\] = 657.(1952 + 30) = 657.1952 + 657.30 = 657.1952 + 19 710

\[B = 660.1952\]= (657 + 3).1952 = 657.1952 + 3.1952 = 657.1952 + 5 856

Mà 19710 > 5 856 nên A > B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tích 25.9676.4 có giá trị bằng kết quả của phép tính nào dưới đây?

Xem đáp án » 25/08/2022 212

Câu 2:

Kết quả của phép tính \[2012.2a + 2012.5a + 2012.3a\]

Xem đáp án » 25/08/2022 183

Câu 3:

Biết \(0 \le x < 100\). Tích các số tự nhiên x là

Xem đáp án » 25/08/2022 149

Câu 4:

Tính nhẩm: 125.24

Xem đáp án » 25/08/2022 146

Câu 5:

Tìm thương và số dư (nếu có) của phép chia 2059:17

Xem đáp án » 25/08/2022 146

Câu 6:

Kết quả của phép tính 258.63 + 258.37?

Xem đáp án » 25/08/2022 146

Câu 7:

Tính nhanh: \[769:15 + 731:15\]

Xem đáp án » 25/08/2022 139

Câu 8:

Tích 1.3.5.7....97 có

Xem đáp án » 25/08/2022 137

Câu 9:

Tính nhẩm: 28.49

Xem đáp án » 25/08/2022 119

LÝ THUYẾT

I. Phép nâng lên lũy thừa 

Lũy thừa bậc n của a, kí hiệu  , là tích của n thừa số a:

Lý thuyết Toán 6 Bài 5: Phép tính lũy thừa với số mũ tự nhiên | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Trong đó:

a được gọi là cơ số

           n được gọi là số mũ.

Quy ước:   a1=a

Phép nhân nhiều thừa số bằng nhau gọi là phép nâng lên lũy thừa.

Chú ý: 

+ an  đọc là “a mũ n” hoặc “a lũy thừa n” hoặc “lũy thừa bậc n của a”.

+ a2  còn được gọi là “a bình phương” hay “bình phương của a”.

+ a3 còn được gọi là “a lập phương” hay “lập phương của a”.

Ví dụ: 

7 . 7 . 7 . 7 = 74 (đọc là 7 mũ 4 hoặc là 7 lũy thừa 4, hoặc lũy thừa bậc bốn của 7)

16 = 2 . 2 . 2 . 2 = 24 

Lưu ý: Với n là số tự nhiên khác 0, ta có: Lý thuyết Toán 6 Bài 5: Phép tính lũy thừa với số mũ tự nhiên | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Ví dụ: 105 = 10 . 10 . 10 . 10 . 10 = 100 000  

II. Nhân hai lũy thừa cùng cơ số

Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng các số mũ: 

am . an = am + n 

Ví dụ: 

+) 2. 24 = 23 + 4 = 27

+) a. a1 = a2 + 1 = a3

+) 4. 45 = 42 + 5 = 47

III. Chia hai lũy thừa cùng cơ số 

Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và trừ các số mũ:

am : an = am - n  (a # 0, m ≥ n)

Quy ước: a0 = 1 (a # 0) . 

Ví dụ:
 + 97 : 93 = 97 - 3 = 94

+ 76 : 7 = 76 : 71 = 76 - 1 = 75

+ 33 : 33 = 33 - 3 = 30 = 1

Câu hỏi mới nhất

Xem thêm »
Xem thêm »