Cho hàm số có đồ thị như hình bên. Khẳng định nào sau đây là khẳng định sai?
A. Phương trình f(x)=0 có 3 nghiệm phân biệt
B. Đồ thị hàm số luôn đồng biến trong khoảng
C. Hàm số có điểm cực đại nhỏ hơn điểm cực tiểu
D. Hàm số có hệ số a>0
Đáp án B
Khẳng định A đúng do đồ thị hàm số cắt Ox tại 3 điểm phân biệt.
Khẳng định B sai do dễ thấy trong khoảng (-1;0) đồ thị hàm số đi xuống nên trong khoảng này hàm số nghịch biến.
Khẳng định C đúng do điểm cực đại của hàm số nằm bên trái điểm cực tiểu.
Khẳng định D đúng do đồ thị hàm số có xu hướng đi lên khi
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho lăng trụ tam giác ABC.A'B'C' có BB'=a, góc giữa đường thẳng BB' và (ABC) bằng 60°, tam giác ABC vuông tại C và góc Hình chiếu vuông góc của điểm B' lên (ABC) trùng với trọng tâm của ABC . Thể tích của khối tứ diện A'.ABC theo a bằng
Một hình nón được cắt bởi một mặt phẳng (P) song song với đáy. Mặt phẳng này chia với mặt xung quanh của hình nón thành hai phần có diện tích bằng nhau như hình vẽ. Gọi (N1) là hình nón có đỉnh A, bán kính đáy HM; (N2) là hình nón có đỉnh A, bán kính đáy OD. Tỉ số thể tích của khối nón (N1) và khối nón (N2) là
Cho parabol có đỉnh S và A là giao điểm khác O của (P) và trục hoành. M là điểm di động trên cung nhỏ SA, tiếp tuyến của (P) tại M cắt Ox, Oy tại E, F. Khi đó, tổng diện tích 2 tam giác cong MOF và MAE có giá trị nhỏ nhất bằng
Trong hệ tọa độ Oxyz, cho điểm M(1;2;-4). Khoảng cách từ M đến trục Oz bằng
Cho hình trụ có thể tích bằng , đường kính đáy bằng 4a. Chiều cao của hình trụ bằng
Cho lăng trụ tứ giác đều ABCD.A'B'C'D' có chiều cao bằng 6a và đường chéo 10a. Thể tích khối lăng trụ này là
Cho mặt cầu và đường thẳng Tổng các giá trị của m để d cắt (S) tại 2 điểm phân biệt A, B sao cho các mặt phẳng tiếp diện của (S) tại A và B vuông góc với nhau
Cho hình lăng trụ ABCD.A'B'C'D' có M là điểm nằm trong tứ giác ABCD sao cho Gọi O' là điểm bất kì nằm trong (A'B'C'D'). Tỉ số thể tích hình chóp O'.ABM và hình lăng trụ ABCD.AB'C'D' bằng
Cho hình phẳng giới hạn bởi hai đồ thị hàm số Đường thẳng y=2 chia hình phẳng đó thành 2 hình có diện tích là Tỷ lệ thể tích là
Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 20 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng 16(cm2). Thể tích của quả bóng bằng bao nhiêu? (Tính gần đúng đến hai chữ số thập phân)
Cho hình nón có diện tích xung quanh là bán kính đáy R=3cm. Khi đó đường sinh của hình nón là