IMG-LOGO

Câu hỏi:

22/07/2024 125

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{{(2x + y)}^2} - 5(4{x^2} - {y^2}) + 6(4{x^2} - 4xy + {y^2}) = 0}\\{2x + y + \frac{1}{{2x - y}} = 3}\end{array}} \right.\)có một nghiệm (x0;y0) thỏa mãn \({x_0} >\frac{1}{2}\). Khi đó \[P = {x_0} + y_0^2\] có giá trị là

A.1

Đáp án chính xác

B.\[\frac{7}{{16}}\]

C.3

D.1 hoặc \[\frac{7}{{16}}\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Ta có \(\left\{ {\begin{array}{*{20}{c}}{{{(2x + y)}^2} - 5(4{x^2} - {y^2}) + 6(4{x^2} - 4xy + {y^2}) = 0\left( 1 \right)}\\{2x + y + \frac{1}{{2x - y}} = 3\left( 2 \right)}\end{array}} \right.\)

\[\left( 1 \right) \Leftrightarrow 8{x^2} + 12{y^2} - 20xy = 0 \Leftrightarrow \left( {x - y} \right)\left( {2x - 3y} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = y}\\{2x = 3y}\end{array}} \right.\]

Với x = y ta có\[\left( 2 \right) \Rightarrow 3x + \frac{1}{x} = 3 \Leftrightarrow 3{x^2} - 3x + 1 = 0\] phương trình vô nghiệm.

Với 2x = 3y ta có \[\left( 2 \right) \Rightarrow 4y + \frac{1}{{2y}} = 3 \Leftrightarrow 8{y^2} - 6y + 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{y = \frac{1}{2}}\\{y = \frac{1}{4}}\end{array}} \right.\]

Với\[y = \frac{1}{4} \Rightarrow x = \frac{3}{8}\left( {KTM} \right)\]Với \[y = \frac{1}{2} \Rightarrow x = \frac{3}{4}\left( {TM} \right) \Rightarrow P = 1\]

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một số tự nhiên có hai chữ số có dạng \(\overline {ab} \)biết hiệu của hai chữ số đó bằng 3. Nếu viết các chữ số theo thứ tự ngược lại thì được một số bằng \(\frac{4}{5}\) số ban đầu trừ đi 10. Khi đó \({a^2} + {b^2}\) bằng

Xem đáp án » 06/09/2022 205

Câu 2:

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x - y = 9}\\{x.y = 90}\end{array}} \right.\)có nghiệm là :

Xem đáp án » 06/09/2022 187

Câu 3:

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} = 3x - y}\\{{y^2} = 3y - x}\end{array}} \right.\) có bao nhiêu nghiệm?

Xem đáp án » 06/09/2022 187

Câu 4:

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + y = 6}\\{{y^2} + x = 6}\end{array}} \right.\)có bao nhiêu nghiệm ?

Xem đáp án » 06/09/2022 181

Câu 5:

Nếu (x;y) là nghiệm của hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 4xy + {y^2} = 1}\\{y - 4xy = 2}\end{array}} \right.\) thì xy bằng bao nhiêu ?

Xem đáp án » 06/09/2022 176

Câu 6:

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + {y^2} = 1}\\{y = x + m}\end{array}} \right.\) có đúng 1 nghiệm khi và chỉ khi :

Xem đáp án » 06/09/2022 175

Câu 7:

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x.y + x + y = 11}\\{{x^2}y + x{y^2} = 30}\end{array}} \right.\)

Xem đáp án » 06/09/2022 170

Câu 8:

Hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{\left| {x - 1} \right| + y = 0}\\{2x - y = 5}\end{array}} \right.\) có nghiệm là ?

Xem đáp án » 06/09/2022 162

Câu 9:

Hệ \(\left\{ {\begin{array}{*{20}{c}}{x - y = 5}\\{{x^2} - {y^2} = 15}\end{array}} \right.\) có nghiệm là

Xem đáp án » 06/09/2022 159

Câu 10:

Cho hệ phương trình : \(\left\{ {\begin{array}{*{20}{c}}{2{x^2} + xy - {y^2} = 0}\\{{x^2} - xy - {y^2} + 3x + 7y + 3 = 0}\end{array}} \right.\). Các cặp nghiệm (x;y) sao cho x,y đều là các số nguyên là :

Xem đáp án » 06/09/2022 150

Câu 11:

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y + xy = 11}\\{{x^2} + {y^2} + 3\left( {x + y} \right) = 28}\end{array}} \right.\) có nghiệm là :

Xem đáp án » 06/09/2022 148

Câu 12:

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y + xy = 5}\\{{x^2} + {y^2} = 5}\end{array}} \right.\) có nghiệm là :

Xem đáp án » 06/09/2022 146

Câu 13:

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^3} - 3x = {y^3} - 3y}\\{{x^6} + {y^6} = 27}\end{array}} \right.\)có bao nhiêu nghiệm ?

Xem đáp án » 06/09/2022 143

Câu 14:

Số nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x + y = 11}\\{5x - 4y = 8}\end{array}} \right.\)là

Xem đáp án » 06/09/2022 142

Câu 15:

Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + 2\left| x \right| = 0}\\{{x^2} = {y^2} - 1}\end{array}} \right.\)ta được nghiệm (x;y). Khi đó \[{x^2} + {y^2}\;\] bằng:

Xem đáp án » 06/09/2022 142

Câu hỏi mới nhất

Xem thêm »
Xem thêm »