Cho (x;y) với x, y nguyên là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{xy + {y^2} + x = 7y\left( 1 \right)}\\{\frac{{{x^2}}}{y} + x = 12\left( 2 \right)}\end{array}} \right.\) thì tích xy bằng
A.1.
B.2.
C.3.
D.4.
Điều kiện\[y \ne 0\]
Hệ phương trình tương đương với\(\left\{ {\begin{array}{*{20}{c}}{x + y + \frac{x}{y} = 7\,\,\,\,\,\,\,\,\left( 1 \right)}\\{x\left( {\frac{x}{y} + 1} \right) = 12\,\,\,\,\,\,\,\,\left( 2 \right)}\end{array}} \right.\)
Từ (1) và x, y là số nguyên nên y là ước của x.
Từ (2) ta có x là ước của 12.
+ \[x = \pm 1\] thì \[\frac{{ \pm 1}}{y} + 1 = \pm 12\] (loại).
+ \[x = \pm 2\] thì \[\frac{{ \pm 2}}{y} + 1 = \pm 6\] (loại).
+ x = 3 thì\[\frac{3}{y} + 1 = 4 \Leftrightarrow y = 1\] (thỏa mãn) ⇒xy = 3.
+ x = −3 thì\[ - \frac{3}{y} + 1 = - 4\] (loại)
+ x = 4 thì\[\frac{4}{y} + 1 = 3 \Leftrightarrow y = 2\]( loại vì không thỏa mãn (1).
+ x = −4 thì \[ - \frac{4}{y} + 1 = - 3 \Leftrightarrow y = 1\] (loại vì không thỏa mãn (1).
+ x = 6 thì \[\frac{6}{y} + 1 = 2 \Leftrightarrow y = 6\] (loại vì không thỏa mãn (1)).
+ x = −6 thì \[ - \frac{6}{y} + 1 = - 2 \Leftrightarrow y = 2\] (loại vì không thỏa mãn (1)).
+ x = 12 thì\[\frac{{12}}{y} + 1 = 1\] vô nghiệm.
+ x = −12 thì \[ - \frac{{12}}{y} + 1 = - 1 \Leftrightarrow y = 6\] (loại vì không thỏa mãn (1)).
Vậy có duy nhất một nghiệm nguyên x = 3; y = 1 nên xy = 3.
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Một số tự nhiên có hai chữ số có dạng \(\overline {ab} \)biết hiệu của hai chữ số đó bằng 3. Nếu viết các chữ số theo thứ tự ngược lại thì được một số bằng \(\frac{4}{5}\) số ban đầu trừ đi 10. Khi đó \({a^2} + {b^2}\) bằng
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x - y = 9}\\{x.y = 90}\end{array}} \right.\)có nghiệm là :
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} = 3x - y}\\{{y^2} = 3y - x}\end{array}} \right.\) có bao nhiêu nghiệm?
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + y = 6}\\{{y^2} + x = 6}\end{array}} \right.\)có bao nhiêu nghiệm ?
Nếu (x;y) là nghiệm của hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 4xy + {y^2} = 1}\\{y - 4xy = 2}\end{array}} \right.\) thì xy bằng bao nhiêu ?
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + {y^2} = 1}\\{y = x + m}\end{array}} \right.\) có đúng 1 nghiệm khi và chỉ khi :
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x.y + x + y = 11}\\{{x^2}y + x{y^2} = 30}\end{array}} \right.\)
Hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{\left| {x - 1} \right| + y = 0}\\{2x - y = 5}\end{array}} \right.\) có nghiệm là ?
Hệ \(\left\{ {\begin{array}{*{20}{c}}{x - y = 5}\\{{x^2} - {y^2} = 15}\end{array}} \right.\) có nghiệm là
Cho hệ phương trình : \(\left\{ {\begin{array}{*{20}{c}}{2{x^2} + xy - {y^2} = 0}\\{{x^2} - xy - {y^2} + 3x + 7y + 3 = 0}\end{array}} \right.\). Các cặp nghiệm (x;y) sao cho x,y đều là các số nguyên là :
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y + xy = 11}\\{{x^2} + {y^2} + 3\left( {x + y} \right) = 28}\end{array}} \right.\) có nghiệm là :
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y + xy = 5}\\{{x^2} + {y^2} = 5}\end{array}} \right.\) có nghiệm là :
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^3} - 3x = {y^3} - 3y}\\{{x^6} + {y^6} = 27}\end{array}} \right.\)có bao nhiêu nghiệm ?
Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + 2\left| x \right| = 0}\\{{x^2} = {y^2} - 1}\end{array}} \right.\)ta được nghiệm (x;y). Khi đó \[{x^2} + {y^2}\;\] bằng:
Số nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x + y = 11}\\{5x - 4y = 8}\end{array}} \right.\)là