Cho tứ diện ABCD có AB=CD=4,BC=AD=5,AC=BD=6. M là điểm thay đổi trong tâm giác ABC. Các đường thẳng qua M song song với AD,BD,CD tương ứng cắt mặt phẳng (BCD),(ACD),(ABD) tại A′,B′,C′. Giá trị lớn nhất của MA′.MB′.MC′ là
A.\[\frac{{40}}{9}\]
B. \[\frac{{24}}{9}\]
C. \[\frac{{30}}{9}\]
D. \[\frac{{20}}{9}\]
Trong tam giác ABC, kéo dài AM,BM,CM cắt các đoạn thẳng BC,CA,AB lần lượt tại H,G,F.
+) Trong mặt phẳng (HAD), kẻ MA′//AD.
+) Trong mặt phẳng (GBD), kẻ MB′//BD.
+) Trong mặt phẳng (FCD), kẻ MC′//CD.
Từ đó ta được các điểm A′,B′,C′ cần tìm.
Theo định lý Ta – let ta có: \[\frac{{MA'}}{{AD}} = \frac{{HM}}{{HA}} \Rightarrow MA' = 5.\frac{{MH}}{{AH}}\]
\[\frac{{MB'}}{{BD}} = \frac{{GM}}{{GB}} \Rightarrow MB' = 6.\frac{{MG}}{{BG}};\frac{{MC'}}{{CD}} = \frac{{FM}}{{FC}} \Rightarrow MC' = 4.\frac{{MF}}{{CF}}\]
\[ \Rightarrow MA'.MB'.MC' = 120.\frac{{MH}}{{AH}}.\frac{{MG}}{{BG}}.\frac{{MF}}{{CF}}\]
Trong tam giác ABC ta có:\[1 = \frac{{MH}}{{AH}} + \frac{{MG}}{{BG}} + \frac{{MF}}{{CF}} \ge 3\sqrt[3]{{\frac{{MH}}{{AH}}.\frac{{MG}}{{BG}}.\frac{{MF}}{{CF}}}}\]
\[ \Rightarrow \frac{{MH}}{{AH}}.\frac{{MG}}{{BG}}.\frac{{MF}}{{CF}} \le \frac{1}{{27}}\]
Do đó\[MA'.MB'.MC' = 120.\frac{{MH}}{{AH}}.\frac{{MG}}{{BG}}.\frac{{MF}}{{CF}} \le 120.\frac{1}{{27}} = \frac{{40}}{9}\]
\[ \Rightarrow {\left( {MA'.MB'.MC'} \right)_{\max }} = \frac{{40}}{9}\]
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình chóp S.ABC, M là một điểm nằm trong tam giác ABC. Các đường thẳng qua MM và song song với SA,SB,SC cắt các mặt (SBC),(SAC),(SAB) lần lượt tại A′,B′,C′. \[\frac{{MA'}}{{SA}} + \frac{{MB'}}{{SB}} + \frac{{MC'}}{{SC}}\] có giá trị không đổi bằng bao nhiêu khi M di động trong tam giác ABC?
Cho hình chóp S.ABCD. Gọi M,N lần lượt là trọng tâm của tam giác SAB và ABC.ABC. Khi đó MN song song với
Cho đường thẳng d và mặt phẳng (α) như hình vẽ, số điểm chung của d và (α) là:
Nếu một đường thẳng d không nằm trong mặt phẳng (α) mà nó song song với đường thẳng d′ trong (α) thì:
Cho tứ diện ABCD, gọi G là trọng tâm tam giác ACD, M thuộc đoạn thẳng BC sao cho CM=2MB. Chọn mệnh đề đúng trong các mệnh đề sau?
Nếu đường thẳng \[d//\left( \alpha \right)\;\] và \[d\prime \subset (\alpha )\;\] thì d và d′ có thể:
Cho tứ diện ABCD. Gọi \[{G_1},{G_2}\;\] lần lượt là trọng tâm các tam giác BCD và ACD. Chọn câu sai ?
Cho đường thẳng d song song với mặt phẳng (α), nếu mặt phẳng (β) chứa d mà cắt (α) theo giao tuyến d′ thì:
Cho tứ diện đều SABC. Gọi I là trung điểm của AB,M là một điểm di động trên đoạn AI. Gọi (P) là mặt phẳng qua M và song song với SI,IC, biết AM=x. Thiết diện tạo bởi mp(P) và tứ diện SABC có chu vi là:
Cho đường thẳng a song song với mặt phẳng (P). Khi đó, số đường thẳng phân biệt nằm trong (P) và song song với a có thể là:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N,P,Q, lần lượt là các điểm nằm trên các cạnh BC,SC,SD,AD sao cho MN//BS,NP//CD,MQ//CD. Hỏi PQ song song với mặt phẳng nào sau đây?