IMG-LOGO

Câu hỏi:

22/07/2024 287

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với (ABCD) và SA=2a. Gọi G là trọng tâm tam giác SAB, αα là góc tạo bởi đường thẳng CG và mặt phẳng (SAC). Tính \[sin\alpha .\]

A.\[\frac{{\sqrt {17} }}{{17}}\]

B. \[\frac{1}{{\sqrt {34} }}\]

Đáp án chính xác

C. \[\frac{2}{{\sqrt {17} }}\]

D. \[\frac{2}{{\sqrt {34} }}\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với (ABCD) và SA=2a. Gọi G là trọng tâm tam giác SAB,  (ảnh 1)

Bước 1:

Gọi O là tâm của ABCD.

M là trung điểm của AO, N là trung điểm của AB.

Qua G kẻ GP song song với MN \[(P \in SM).\]

Ta có ABCD là hình vuông nên \[BD \bot AC\]. Mà \[MN||BD \Rightarrow MN \bot AC\].

Ta lại có \[MN \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\]

\[\begin{array}{l}MN \bot \left( {SAC} \right)\\GP||MN \Rightarrow GP \bot \left( {SAC} \right)\end{array}\]

Bước 2:

Hình chiếu của C lên (SAC) là C, hình chiếu của G lên (SAC) là P.

=> Hình chiếu của CG lên (SAC) là CP

Góc giữa CG và (SAC) là góc giữa CG và CP và bằng \[\widehat {GCP} = \alpha \]

Bước 3:

\[GP = \frac{2}{3}MN = \frac{2}{3}.\frac{1}{2}OB = \frac{1}{3}.\frac{1}{2}BD = \frac{1}{6}.a\sqrt 2 \]

Kẻ\[PQ||SA \Rightarrow PQ = \frac{1}{3}SA = \frac{{2a}}{3}\]

\[\begin{array}{*{20}{l}}{CQ = \frac{1}{3}MA + 3MA = \frac{{10}}{3}.MA}\\{ = \frac{{10}}{3}.\frac{1}{4}AC = \frac{5}{6}AC = \frac{{5.a\sqrt 2 }}{6}}\\{ \Rightarrow CP = \sqrt {C{Q^2} + P{Q^2}} }\\{ = \sqrt {\frac{{25{a^2}}}{{18}} + \frac{{4{a^2}}}{9}} = a\sqrt {\frac{{11}}{6}} }\\{ \Rightarrow CG = \sqrt {C{P^2} + G{P^2}} = \frac{{a\sqrt {17} }}{3}}\\{ \Rightarrow \sin \alpha = \frac{{GP}}{{CG}} = \frac{{\sqrt 2 }}{6}.\frac{3}{{\sqrt {17} }} = \frac{1}{{\sqrt {34} }}}\end{array}\]

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=a, BC=2a, SA vuông góc với mặt phẳng đáy và \(SA = \sqrt {15} a\) (tham khảo hình bên)

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=a, BC=2a, SA vuông góc với mặt phẳng đáy và (ảnh 1)

Góc giữa đường thẳng SC và mặt phẳng đáy bằng

Xem đáp án » 07/09/2022 299

Câu 2:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Tính số đo của góc giữa SA và (ABC).

Xem đáp án » 07/09/2022 244

Câu 3:

Cho hình chóp S.ABCD có \[SA \bot (ABCD)\] và đáy ABCD là hình chữ nhật. Gọi O là tâm của ABCD và I là trung điểm của SC. Khẳng định nào sau đây sai ?

Xem đáp án » 07/09/2022 232

Câu 4:

Cho tam giác ABC vuông cân tại A và BC=a.. Trên đường thẳng qua A vuông góc với (ABC) lấy điểm SS sao cho \(SA = \frac{{a\sqrt 6 }}{2}\). Tính số đo góc giữa đường thẳng SA và (ABC)

Xem đáp án » 07/09/2022 226

Câu 5:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a và SA=SB=SC=b. Gọi G là trọng tâm \[\Delta ABC\]. Độ dài SG là:

Xem đáp án » 07/09/2022 225

Câu 6:

Cho hình chóp S.ABCD, với đáy ABCD là hình bình hành tâm O;AD,SA,AB đôi một vuông góc AD=8,SA=6. (P)là mặt phẳng qua trung điểm của AB và vuông góc với AB. Thiết diện của (P) và hình chóp có diện tích bằng?

Xem đáp án » 07/09/2022 195

Câu 7:

Cho tứ diện ABCD có cạnh AB, BC, CD bằng nhau và vuông góc với nhau từng đôi một. Khẳng định nào sau đây đúng?

Xem đáp án » 07/09/2022 187

Câu 8:

Trong các mệnh đề sau mệnh đề nào đúng?

Xem đáp án » 07/09/2022 170

Câu 9:

Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh bằng aa và \[SA \bot (ABCD)\] Biết \(SA = \frac{{a\sqrt 6 }}{3}\). Tính góc giữa SC và (ABCD).

Xem đáp án » 07/09/2022 164

Câu 10:

Cho hình thoi ABCD có tâm \(O,\widehat {ADC} = {60^0},AC = 2a\). Lấy điểm S không thuộc (ABCD) sao cho \[SO \bot (ABCD)\] Gọi \[\alpha \] là góc giữa đường thẳng SB và mặt phẳng (ABCD) và \[tan\alpha = \frac{1}{2}\]. Gọi \[\beta \] là góc giữa SC và (ABCD)(ABCD), chọn mệnh đề đúng :

Xem đáp án » 07/09/2022 164

Câu 11:

Cho tứ diện ABCD đều. Gọi α là góc giữa AB và mp(BCD). Chọn khẳng định đúng trong các khẳng định sau?

Xem đáp án » 07/09/2022 163

Câu 12:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Mặt bên SAB là tam giác đều có đường cao SH vuông góc với mp(ABCD). Gọi α là góc giữa BD và mp(SAD). Chọn khẳng định đúng trong các khẳng định sau?

Xem đáp án » 07/09/2022 155

Câu 13:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \[SA \bot (ABCD),\;SA = a\sqrt 6 \]. Gọi \[\alpha \] là góc giữa SC và mp(SAB). Chọn khẳng định đúng trong các khẳng định sau?

Xem đáp án » 07/09/2022 153

Câu 14:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cạnh huyền BC=a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm BC. Biết SB=a. Tính số đo của góc giữa SA và (ABC).

Xem đáp án » 07/09/2022 149

Câu 15:

Cho hình lập phương ABCD.A′B′C′D′. Gọi \[\alpha \] là góc giữa AC′ và mp .(A′BCD′). Chọn khẳng định đúng trong các khẳng định sau?

Xem đáp án » 07/09/2022 142

Câu hỏi mới nhất

Xem thêm »
Xem thêm »