Thứ bảy, 23/11/2024
IMG-LOGO

Câu hỏi:

03/07/2024 110

Cho hàm số \[y = \frac{1}{3}{x^3} - m{x^2} + (2m - 4)x - 3.\]. Tìm mm để hàm số có các điểm cực đại, cực tiểu \[{x_1};{x_2}\;\] thỏa mãn: \[x_1^2 + x_2^2 = {x_1}.{x_2} + 10\]

A.m=1

B.\[m = \frac{1}{2}\]

C. \[m = 1;m = \frac{1}{2}\]

Đáp án chính xác

D. \[m = 3\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

\[y' = {x^2} - 2mx + 2m - 4\]

Để hàm số có cực đại cực tiểu \[ \Leftrightarrow {\rm{\Delta '}} > 0,\forall m \Leftrightarrow {m^2} - 2m + 4 > 0,\forall m\]

Khi đó phương trình \[y' = 0\] có hai nghiệm \[{x_1},{x_2}\] thỏa mãn \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = - \frac{b}{a} = 2m}\\{{x_1}{x_2} = \frac{c}{a} = 2m - 4}\end{array}} \right.\)

Ta có:

\[x_1^2 + x_2^2 = {x_1}.{x_2} + 10\]

\[ \Leftrightarrow {({x_1} + {x_2})^2} - 2{x_1}{x_2} - {x_1}{x_2} - 10 = 0\]

\[ \Leftrightarrow {({x_1} + {x_2})^2} - 3{x_1}{x_2} - 10 = 0\]

\[ \Leftrightarrow {(2m)^2} - 3.(2m - 4) - 10 = 0\]

\[ \Leftrightarrow 4{m^2} - 6m + 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 1}\\{m = \frac{1}{2}}\end{array}} \right.\]

Đáp án cần chọn là: C

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \[y = {x^4} - 2m{x^2} + {m^2} + m.\]. Tất cả các giá trị của m để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác có một góc 120o là:

Xem đáp án » 07/09/2022 181

Câu 2:

Tìm tất cả các giá trị của m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + x - 1\]  có cực đại và cực tiểu.

Xem đáp án » 07/09/2022 172

Câu 3:

Hàm số \[f\left( x \right) = \left| {\frac{x}{{{x^2} + 1}} - m} \right|\] (với m là tham số thực) có nhiều nhất bao nhiêu điểm cực trị?

Xem đáp án » 07/09/2022 156

Câu 4:

Cho hàm số \[y = {x^4} + 2\left( {1 - {m^2}} \right){x^2} + m + 1.\]. Tất cả các giá trị của mm để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác có diện tích bằng \(4\sqrt 2 \)là

Xem đáp án » 07/09/2022 151

Câu 5:

Tìm tất cả các giá trị của tham số m để hàm số \[y = {x^3} - 2m{x^2} + {m^2}x + 2\;\] đạt cực tiểu tại x=1.

Xem đáp án » 07/09/2022 146

Câu 6:

Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số \[y = m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1\] có hai điểm cực trị nằm về hai phía của trục hoành.

Xem đáp án » 07/09/2022 146

Câu 7:

Tìm tất cả các giá trị của tham số m để hàm số \[y = - {x^3} - 3{x^2} + mx + 2\;\] có cực đại và cực tiểu?

Xem đáp án » 07/09/2022 145

Câu 8:

Cho hàm số \[f\left( x \right) = \frac{1}{3}{x^3} + m{x^2} + \left( {{m^2} - 4} \right)x + 1\]. Có bao nhiêu giá trị nguyên của tham số mm để hàm số \[y = f(|x|)\;\] có đúng 3 điểm cực trị?

Xem đáp án » 07/09/2022 145

Câu 9:

Cho hàm số \[y = {x^4} - 2m{x^2} + 3m + 2.\]. Tất cả các giá trị của m để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác đều là:

Xem đáp án » 07/09/2022 144

Câu 10:

Cho hàm số \[y = 2{x^4} - \left( {m + 1} \right){x^2} - 2.\]. Tất cả các giá trị của m để hàm số có 1 điểm cực trị là:

Xem đáp án » 07/09/2022 141

Câu 11:

Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm \[g\prime (x) = f(x) + m\]. Tìm tất cả các giá trị thực của tham số mm để hàm số g(x) có duy nhất một cực trị.

Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm  (ảnh 1)

Xem đáp án » 07/09/2022 141

Câu 12:

Tìm tất cả các giá trị của m để đồ thị hàm số \[y = - {x^4} + 2m{x^2}\;\] có 3 điểm cực trị ?

Xem đáp án » 07/09/2022 135

Câu 13:

Tìm m để (Cm) : \[y = {x^4} - 2m{x^2} + 2\;\] có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân.

Xem đáp án » 07/09/2022 135

Câu 14:

Gọi k là số giá trị nguyên của tham số m để hàm số \[y = \frac{1}{3}{x^3} - {x^2} + ({m^2} - 8m + 16)x - 31\;\] có cực trị. Tìm k.

Xem đáp án » 07/09/2022 133

Câu 15:

Tìm tất cả các giá trị của m để hàm số \[y = - \frac{1}{3}{x^3} + \frac{{m{x^2}}}{3} + 4\;\] đạt cực đại tại x=2?

Xem đáp án » 07/09/2022 131

Câu hỏi mới nhất

Xem thêm »
Xem thêm »