Tập xác định của hàm số \[f\left( x \right) = {\log _{\frac{1}{2}}}\left( {{{\log }_4}\left( {{{\log }_{\frac{1}{4}}}\left( {{{\log }_{16}}\left( {{{\log }_{\frac{1}{{16}}}}x} \right)} \right)} \right)} \right)\] là một khoảng có độ dài n/m, với m và n là các số nguyên dương và nguyên tố cùng nhau. Khi đó m−n bằng:
A.−240
B.271
C.241
D.−241
Hàm số\[f\left( x \right) = {\log _{\frac{1}{2}}}\left( {{{\log }_4}\left( {{{\log }_{\frac{1}{4}}}\left( {{{\log }_{16}}\left( {{{\log }_{\frac{1}{{16}}}}x} \right)} \right)} \right)} \right)\] xác định
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > 0}\\{lo{g_{\frac{1}{{16}}}}x > 0}\\{lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right) > 0}\\{lo{g_{\frac{1}{4}}}\left( {lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right)} \right) > 0}\\{lo{g_4}\left( {lo{g_{\frac{1}{4}}}\left( {lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right)} \right)} \right) > 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > 0}\\{x < 1}\\{lo{g_{\frac{1}{{16}}}}x > 1}\\{\begin{array}{*{20}{c}}{lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right) < 1}\\{lo{g_{\frac{1}{4}}}\left( {lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right)} \right) > 1}\end{array}}\end{array}} \right.} \right.\)</></>
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{0 < x < 1}\\{x < \frac{1}{{16}}}\\{lo{g_{\frac{1}{{16}}}}x < 16}\\{lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right) < \frac{1}{4}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{0 < x < 1}\\{x < \frac{1}{{16}}}\\{x > {{\left( {\frac{1}{{16}}} \right)}^{16}}}\\{lo{g_{\frac{1}{{16}}}}x < {{16}^{\frac{1}{4}}} = 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{\left( {\frac{1}{{16}}} \right)}^{16}} < x < \frac{1}{{16}}}\\{x > {{\left( {\frac{1}{{16}}} \right)}^2} = \frac{1}{{256}}}\end{array}} \right.\)
\( \Leftrightarrow \frac{1}{{256}} < x < \frac{1}{{16}}\)
Suy ra tập xác định của hàm số đã cho là\[D = \left( {\frac{1}{{256}};\frac{1}{{16}}} \right)\]
⇒ Tập xác định là khoảng có độ dài là\[\frac{1}{{16}} - \frac{1}{{256}} = \frac{{15}}{{256}} \Rightarrow n = 15,\,\,m = 256\]
Vậy\[m - n = 256 - 15 = 241\]
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Xét các số thực a, b thỏa mãn a>b>1. Tìm giá trị nhỏ nhất Pmin của biểu thức \[P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\frac{a}{b}\].
Cho hàm số \[f\left( x \right) = \ln \left( {{e^x} + m} \right)\]có \[f'\left( { - \ln 2} \right) = \frac{3}{2}\]. Mệnh đề nào dưới đây đúng?
Tiệm cận đứng của đồ thị hàm số \[y = {\log _a}x(0 < a \ne 1)\] là đường thẳng:
Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị \[y = {\log _a}x,y = {\log _b}x\] và trục hoành lần lượt tại A,B và H phân biệt ta đều có 3HA=4HB (hình vẽ bên dưới). Khẳng định nào sau đây là đúng?
Cho hai hàm số \[y = \ln \left| {\frac{{x - 2}}{x}} \right|\]và\(y = \frac{3}{{x - 2}} - \frac{1}{x} + 4m - 2020\). Tổng tất cả các giá trị nguyên của tham số m để hai đồ thị hàm số cắt nhau tại một điểm duy nhất bằng:
Tìm tất cả các giá trị thực của tham số m sao cho hàm số \[y = log\left( {{x^2} - 2mx + 4} \right)\]có tập xác định là R
Điểm nào sau đây không thuộc đồ thị hàm số \[y = lo{g_a}x(0 < a \ne 1)\;\]?
Hàm số \[y = {\log _a}x\]và \(y = {\log _b}x\) có đồ thị như hình vẽ bên:
Đường thẳng y = 3 cắt hai đồ thị tại các điểm có hoành độ \[{x_1},{x_2}\]. Biết rằng \[{x_2} = 2{x_1},\], giá trị của ab bằng:
Nếu gọi \[({G_1})\]là đồ thị hàm số \[y = {a^x}\;\] và \[({G_2})\]là đồ thị hàm số \[y = lo{g_a}x\;\] với \[0 < a \ne 1\]. Mệnh đề nào dưới đây đúng ?
Cho ba số thực dương a,b,c khác 1. Đồ thị các hàm số \[y = {\log _a}x,y = {\log _b}x,y = {\log _c}x\] được cho trong hình vẽ sau:
Mệnh đề nào dưới đây đúng?
Tìm tập xác định D của hàm số \[y = {\log _{\sqrt 2 }}\left( {\frac{{ - 3}}{{2 - 2x}}} \right)\]