Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị \[y = {\log _a}x,y = {\log _b}x\] và trục hoành lần lượt tại A,B và H phân biệt ta đều có 3HA=4HB (hình vẽ bên dưới). Khẳng định nào sau đây là đúng?
A.\[{a^3}{b^4} = 1\]
B. \[3a = 4b\]
C. \[4a = 3b\]
D. \[{a^4}{b^3} = 1\]
Gọi \[H\left( {{x_0};0} \right)\,\,\left( {{x_0} > 1} \right)\] ta có:\[A\left( {{x_0};{{\log }_a}{x_0}} \right);\,\,B\left( {{x_0};{{\log }_b}{x_0}} \right)\]
\[ \Rightarrow HA = {\log _a}{x_0};HB = - {\log _b}{x_0}\] (do\[{\log _a}{x_0} > 0,\,\,{\log _b}{x_0} < 0)\]
Theo bài ra ta có:\[3HA = 4HB \Leftrightarrow 3{\log _a}{x_0} = - 4{\log _b}{x_0}\]
\[\begin{array}{*{20}{l}}{ \Leftrightarrow 3{{\log }_a}{x_0} + 4{{\log }_b}{x_0} = 0}\\{ \Leftrightarrow \frac{3}{{{{\log }_{{x_0}}}a}} + \frac{4}{{{{\log }_{{x_0}}}b}} = 0}\\{ \Leftrightarrow \frac{{3{{\log }_{{x_0}}}b + 4{{\log }_{{x_0}}}a}}{{{{\log }_{{x_0}}}b.{{\log }_{{x_0}}}a}} = 0}\\{ \Leftrightarrow {{\log }_{{x_0}}}{b^3} + {{\log }_{{x_0}}}{a^4} = 0}\\{ \Leftrightarrow {{\log }_{{x_0}}}{a^4}{b^3} = 0}\\{ \Leftrightarrow {a^4}{b^3} = 1}\end{array}\]
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Xét các số thực a, b thỏa mãn a>b>1. Tìm giá trị nhỏ nhất Pmin của biểu thức \[P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\frac{a}{b}\].
Cho hàm số \[f\left( x \right) = \ln \left( {{e^x} + m} \right)\]có \[f'\left( { - \ln 2} \right) = \frac{3}{2}\]. Mệnh đề nào dưới đây đúng?
Tiệm cận đứng của đồ thị hàm số \[y = {\log _a}x(0 < a \ne 1)\] là đường thẳng:
Cho hai hàm số \[y = \ln \left| {\frac{{x - 2}}{x}} \right|\]và\(y = \frac{3}{{x - 2}} - \frac{1}{x} + 4m - 2020\). Tổng tất cả các giá trị nguyên của tham số m để hai đồ thị hàm số cắt nhau tại một điểm duy nhất bằng:
Tìm tất cả các giá trị thực của tham số m sao cho hàm số \[y = log\left( {{x^2} - 2mx + 4} \right)\]có tập xác định là R
Điểm nào sau đây không thuộc đồ thị hàm số \[y = lo{g_a}x(0 < a \ne 1)\;\]?
Hàm số \[y = {\log _a}x\]và \(y = {\log _b}x\) có đồ thị như hình vẽ bên:
Đường thẳng y = 3 cắt hai đồ thị tại các điểm có hoành độ \[{x_1},{x_2}\]. Biết rằng \[{x_2} = 2{x_1},\], giá trị của ab bằng:
Tìm tập xác định D của hàm số \[y = {\log _{\sqrt 2 }}\left( {\frac{{ - 3}}{{2 - 2x}}} \right)\]
Nếu gọi \[({G_1})\]là đồ thị hàm số \[y = {a^x}\;\] và \[({G_2})\]là đồ thị hàm số \[y = lo{g_a}x\;\] với \[0 < a \ne 1\]. Mệnh đề nào dưới đây đúng ?
Cho ba số thực dương a,b,c khác 1. Đồ thị các hàm số \[y = {\log _a}x,y = {\log _b}x,y = {\log _c}x\] được cho trong hình vẽ sau:
Mệnh đề nào dưới đây đúng?
Điểm \[({x_0};{y_0})\;\]thuộc đồ thị hàm số \[y = lo{g_a}x(0 < a \ne 1)\;\] nếu: